Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2022, Volume 25, Number 4, Pages 409–416
DOI: https://doi.org/10.15372/SJNM20220406
(Mi sjvm820)
 

New convergence mode for the generalized spectrum approximation

S. Kamouche, H. Guebbai

Laboratoire des Mathématiques Appliquées et de Modélisation, Université 8 Mai 1945, B.P. 401, Guelma, 24000, Algérie
References:
Abstract: In this paper, we introduce a new convergence mode to deal with the generalized spectrum approximation of two bounded operators. This new technique is obtained by extending the well-known $\nu$-convergence used in the case of classical spectrum approximation. This new vision allows us to see the $\nu$-convergence assumption as a special case of our new method compared to the hypotheses needed in old methods, those required in this paper are weaker. In addition, we prove that the property $U$ holds, which solves the spectral pollution problem arising in spectrum approximation of unbounded operator.
Key words: generalized spectrum, $\nu$-convergence, property $U$, spectral approximation.
Received: 22.02.2022
Revised: 31.03.2022
Accepted: 18.07.2022
Document Type: Article
Language: Russian
Citation: S. Kamouche, H. Guebbai, “New convergence mode for the generalized spectrum approximation”, Sib. Zh. Vychisl. Mat., 25:4 (2022), 409–416
Citation in format AMSBIB
\Bibitem{KamGue22}
\by S.~Kamouche, H.~Guebbai
\paper New convergence mode for the generalized spectrum
approximation
\jour Sib. Zh. Vychisl. Mat.
\yr 2022
\vol 25
\issue 4
\pages 409--416
\mathnet{http://mi.mathnet.ru/sjvm820}
\crossref{https://doi.org/10.15372/SJNM20220406}
Linking options:
  • https://www.mathnet.ru/eng/sjvm820
  • https://www.mathnet.ru/eng/sjvm/v25/i4/p409
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:75
    Full-text PDF :2
    References:20
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024