Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2022, Volume 25, Number 3, Pages 329–342
DOI: https://doi.org/10.15372/SJNM20220308
(Mi sjvm814)
 

Generalization of the Gauss–Jordan method for solving homogeneous infinite systems of linear algebraic equations

F. M. Fedorov, N. N. Pavlov, S. V. Potapova, O. F. Ivanova, V. Yu. Shadrin

Research Institute of Mathematics of North-Eastern Federal University named after M. K. Amosov
References:
Abstract: In this paper, we, first, using the reduction method in the narrow sense (the simple reduction method), have generalized the classical Gauss–Jordan method for solving finite systems of linear algebraic equations to inhomogeneous infinite systems. The generalization is based on a new theory of solutions to inhomogeneous infinite systems, proposed by us, which gives an exact analytical solution in the form of a series. Second, we have shown that the application of reduction in the narrow sense in the case of homogeneous systems gives only a trivial solution, therefore, in order to generalize the Gauss–Jordan method for solving infinite homogeneous systems, we used the reduction method in the wide sense. A numerical comparison is given that shows acceptable accuracy.
Key words: homogeneous infinite systems, Gauss–Jordan algorithm, infinite determinant, Gaussian system, reduction method in the narrow and the wide senses.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FSRG-2020-0006
Received: 10.07.2019
Revised: 12.10.2021
Accepted: 24.04.2022
Document Type: Article
UDC: 519.61
Language: Russian
Citation: F. M. Fedorov, N. N. Pavlov, S. V. Potapova, O. F. Ivanova, V. Yu. Shadrin, “Generalization of the Gauss–Jordan method for solving homogeneous infinite systems of linear algebraic equations”, Sib. Zh. Vychisl. Mat., 25:3 (2022), 329–342
Citation in format AMSBIB
\Bibitem{FedPavPot22}
\by F.~M.~Fedorov, N.~N.~Pavlov, S.~V.~Potapova, O.~F.~Ivanova, V.~Yu.~Shadrin
\paper Generalization of the Gauss–Jordan method for solving homogeneous infinite systems of
linear algebraic equations
\jour Sib. Zh. Vychisl. Mat.
\yr 2022
\vol 25
\issue 3
\pages 329--342
\mathnet{http://mi.mathnet.ru/sjvm814}
\crossref{https://doi.org/10.15372/SJNM20220308}
Linking options:
  • https://www.mathnet.ru/eng/sjvm814
  • https://www.mathnet.ru/eng/sjvm/v25/i3/p329
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:76
    Full-text PDF :17
    References:22
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024