Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2022, Volume 25, Number 3, Pages 289–301
DOI: https://doi.org/10.15372/SJNM20220305
(Mi sjvm811)
 

Finite difference schemes of the 4th order of approximation for Maxwell's equations

A. F. Mastryukov

Institute of Computational Mathematics and Mathematical Geophysics of Siberian Branch of Russian Academy of Sciences, Novosibirsk
References:
Abstract: In this paper, optimum differential schemes for the solution of the Maxwell equations with the use of the Laquerre spectral transformation are considered. Additional parameters are introduced into the differential scheme of equations for harmonics. Numerical values of these parameters are obtained by minimization of an error of differential approximation of the Helmholtz equation. The optimum values of parameters thus obtained are used when constructing differential schemes — optimum differential schemes. Two versions of optimum differential schemes are considered. It is shown that the use of optimum differential schemes leads to an increase in the accuracy of the solution of the equations. A simple modification of the differential scheme gives an increase in the efficiency of the algorithm.
Key words: finite difference, optimal, accuracy, electromagnetic waves, Laguerre method.
Received: 29.09.2021
Revised: 09.12.2021
Accepted: 24.04.2022
Document Type: Article
UDC: 550.834
Language: Russian
Citation: A. F. Mastryukov, “Finite difference schemes of the 4th order of approximation for Maxwell's equations”, Sib. Zh. Vychisl. Mat., 25:3 (2022), 289–301
Citation in format AMSBIB
\Bibitem{Mas22}
\by A.~F.~Mastryukov
\paper Finite difference schemes of the 4th order of approximation for
Maxwell's equations
\jour Sib. Zh. Vychisl. Mat.
\yr 2022
\vol 25
\issue 3
\pages 289--301
\mathnet{http://mi.mathnet.ru/sjvm811}
\crossref{https://doi.org/10.15372/SJNM20220305}
Linking options:
  • https://www.mathnet.ru/eng/sjvm811
  • https://www.mathnet.ru/eng/sjvm/v25/i3/p289
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:69
    Full-text PDF :3
    References:25
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024