Abstract:
For a model of circadian oscilator represented in the form of 6-dimensional nonlinear dynamical system,
conditions of uniqueness of an equilibrium point, and conditions of existence of a periodic trajectory (cycle)
are established. One client-server application is elaborated in order to fulfill numerical experiments with this
model on a cloud server, and to visualize results of these experiments.
Citation:
A. A. Akinshin, N. B. Ayupova, V. P. Golubyatnikov, N. E. Kirillova, O. A. Podkolodnaya, N. L. Podkolodnyi, “On one numerical model of a circadian oscillator”, Sib. Zh. Vychisl. Mat., 25:3 (2022), 227–240
\Bibitem{AkiAyuGol22}
\by A.~A.~Akinshin, N.~B.~Ayupova, V.~P.~Golubyatnikov, N.~E.~Kirillova, O.~A.~Podkolodnaya, N.~L.~Podkolodnyi
\paper On one numerical model of a circadian oscillator
\jour Sib. Zh. Vychisl. Mat.
\yr 2022
\vol 25
\issue 3
\pages 227--240
\mathnet{http://mi.mathnet.ru/sjvm807}
\crossref{https://doi.org/10.15372/SJNM20220301}
Linking options:
https://www.mathnet.ru/eng/sjvm807
https://www.mathnet.ru/eng/sjvm/v25/i3/p227
This publication is cited in the following 1 articles:
D. P. Furman, T. A. Bukharina, V. P. Golubyatnikov, “The central regulatory circuit of the morphogenesis system drosophila mechanoreceptors: mutation effects”, J. Appl. Industr. Math., 17:3 (2023), 535–543