Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2021, Volume 24, Number 2, Pages 193–212
DOI: https://doi.org/10.15372/SJNM20210206
(Mi sjvm775)
 

Lipschitz-like mapping and its application to convergence analysis of a variant of Newton's method

M. H. Rashidab

a Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing-100190, P.R. China
b Department of Mathematics, Faculty of Science, University of Rajshahi, Rajshahi-6205, Bangladesh
References:
Abstract: Let $X$ and $Y$ be Banach spaces. Let $f: \Omega\to Y$ be a Fréchet differentiable function on an open subset $\Omega$ of $X$ and $F$ be a set-valued mapping with closed graph. Consider the following generalized equation problem: $0 \in f(x)+F(x)$. In the present paper, we study a variant of Newton's method for solving generalized equation (1) and analyze semilocal and local convergence of this method under weaker conditions than those considered by Jean-Alexis and Piétrus [13]. In fact, we show that the variant of Newton's method is superlinearly convergent when the Frechet derivative of f is $(L,p)$-Hölder continuous and $(f+F)^{-1}$ is Lipzchitz-like at a reference point. Moreover, applications of this method to a nonlinear programming problem and a variational inequality are given. Numerical experiments are provided which illustrate the theoretical results.
Key words: set-valued mappings, lipschitz-like mappings, generalized equations, variant of Newton's method, semilocal convergence.
Funding agency
This work was supported by the President International Fellowship Initiative (PIFI), Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.
Received: 01.02.2019
Revised: 27.04.2019
Accepted: 04.02.2021
English version:
Numerical Analysis and Applications, 2021, Volume 14, Issue 2, Pages 167–185
DOI: https://doi.org/10.1134/S1995423921020063
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. H. Rashid, “Lipschitz-like mapping and its application to convergence analysis of a variant of Newton's method”, Sib. Zh. Vychisl. Mat., 24:2 (2021), 193–212; Num. Anal. Appl., 14:2 (2021), 167–185
Citation in format AMSBIB
\Bibitem{Ras21}
\by M.~H.~Rashid
\paper Lipschitz-like mapping and its application to convergence analysis of a variant of Newton's method
\jour Sib. Zh. Vychisl. Mat.
\yr 2021
\vol 24
\issue 2
\pages 193--212
\mathnet{http://mi.mathnet.ru/sjvm775}
\crossref{https://doi.org/10.15372/SJNM20210206}
\transl
\jour Num. Anal. Appl.
\yr 2021
\vol 14
\issue 2
\pages 167--185
\crossref{https://doi.org/10.1134/S1995423921020063}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000678084300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85111354136}
Linking options:
  • https://www.mathnet.ru/eng/sjvm775
  • https://www.mathnet.ru/eng/sjvm/v24/i2/p193
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025