Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2020, Volume 23, Number 4, Pages 395–414
DOI: https://doi.org/10.15372/SJNM20200404
(Mi sjvm756)
 

This article is cited in 37 scientific papers (total in 37 papers)

Mathematical modeling and forecasting of COVID-19 in Moscow and Novosibirsk region

O. I. Krivorotkoabc, S. I. Kabanikhincba, N. Yu. Zyatkovb, A. Yu. Prikhodkobca, N. M. Prokhoshinab, M. A. Shishlenincab

a Mathematical Center in Akademgorodok, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
c Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
References:
Abstract: We investigate the inverse problems of finding unknown parameters of the SEIR-HCD and SEIR-D mathematical models of the spread of COVID-19 coronavirus infection based on additional information about the number of detected cases, mortality, self-isolation coefficient and tests performed for the city of Moscow and the Novosibirsk region since 23.03.2020. In the SEIR-HCD model, the population is divided into seven, and in SEIR-D - into five groups with similar characteristics and with transition probabilities depending on a specific region. An analysis of the identifiability of the SEIR-HCD mathematical model was made, which revealed the least sensitive unknown parameters as related to additional information. The task of determining parameters is reduced to the minimization of objective functionals, which are solved by stochastic methods (simulated annealing, differential evolution, genetic algorithm). Prognostic scenarios for the disease development in Moscow and in the Novosibirsk region were developed and the applicability of the developed models was analyzed.
Key words: mathematical modeling, pandemic, COVID-19, SIER-HCD, SIER-D, scenarios, inverse problem, identifiability, optimization, differential evolution, annealing simulation, genetic algorithm, Moscow, Novosibirsk region.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1675
Russian Foundation for Basic Research 18-71-10044
This work was supported by the Russian Science Foundation under project no. 18-71-10044 (problem statement, identifiability analysis, and numerical solution of the forecasting problem for mathematical model SEIR-HCD, Sections 1, 3, and 4), and the Mathematical Center in Akademgorodok under agreement no. 075-15-2019-1675 with the Ministry of Science and Higher Education of the Russian Federation (formulation and numerical solution of the inverse problem for mathematical model SEIR-D, Sections 2 and 3).
Received: 20.07.2020
Revised: 30.07.2020
Accepted: 30.07.2020
English version:
Numerical Analysis and Applications, 2020, Volume 13, Issue 4, Pages 332–348
DOI: https://doi.org/10.1134/S1995423920040047
Bibliographic databases:
Document Type: Article
UDC: 519.62
Language: Russian
Citation: O. I. Krivorotko, S. I. Kabanikhin, N. Yu. Zyatkov, A. Yu. Prikhodko, N. M. Prokhoshin, M. A. Shishlenin, “Mathematical modeling and forecasting of COVID-19 in Moscow and Novosibirsk region”, Sib. Zh. Vychisl. Mat., 23:4 (2020), 395–414; Num. Anal. Appl., 13:4 (2020), 332–348
Citation in format AMSBIB
\Bibitem{KriKabZya20}
\by O.~I.~Krivorotko, S.~I.~Kabanikhin, N.~Yu.~Zyatkov, A.~Yu.~Prikhodko, N.~M.~Prokhoshin, M.~A.~Shishlenin
\paper Mathematical modeling and forecasting of COVID-19 in
Moscow and Novosibirsk region
\jour Sib. Zh. Vychisl. Mat.
\yr 2020
\vol 23
\issue 4
\pages 395--414
\mathnet{http://mi.mathnet.ru/sjvm756}
\crossref{https://doi.org/10.15372/SJNM20200404}
\transl
\jour Num. Anal. Appl.
\yr 2020
\vol 13
\issue 4
\pages 332--348
\crossref{https://doi.org/10.1134/S1995423920040047}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000600885900004}
Linking options:
  • https://www.mathnet.ru/eng/sjvm756
  • https://www.mathnet.ru/eng/sjvm/v23/i4/p395
  • This publication is cited in the following 37 articles:
    1. Viktoriya Petrakova, Olga Krivorotko, “Comparison of Two Mean Field Approaches to Modeling an Epidemic Spread”, J Optim Theory Appl, 204:3 (2025)  crossref
    2. Ahmad Alhomaid, Abdullah H. Alzeer, Fahad Alsaawi, Abdulaziz Aljandal, Rami Al-Jafar, Marwan Albalawi, Dana Alotaibi, Raghad Alabdullatif, Razan AlGhassab, Dalia M. Mominkhan, Muaddi Alharbi, Ahmad A. Alghamdi, Maryam Almoklif, Mohammed K. Alabdulaali, “The impact of non-pharmaceutical interventions on the spread of COVID-19 in Saudi Arabia: Simulation approach”, Saudi Pharmaceutical Journal, 32:1 (2024), 101886  crossref
    3. Olga Krivorotko, Sergey Kabanikhin, “Artificial intelligence for COVID-19 spread modeling”, Journal of Inverse and Ill-posed Problems, 32:2 (2024), 297  crossref
    4. E. P. Krugova, E. E. Bukzhalev, “O matematicheskikh modelyakh virusologii, ispolzovannykh dlya izucheniya pandemii COVID-19”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody kraevykh zadach. Pontryaginskie chteniya—XXXIV», Voronezh, 3-9 maya 2023 g. Chast 3, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 232, VINITI RAN, M., 2024, 122–139  mathnet  crossref
    5. Natalia Baturina, V.I. Pakhomov, A.N. Altybayev, M. Petković, T.A. Maltseva, “Calibrating the parameters of the cholera epidemic spread model”, BIO Web Conf., 113 (2024), 06015  crossref
    6. Kexin Wei, Shaojuan Ma, “The identification for time-varying parameter and noise of tuberculosis with seasonal changes based on data-behavior-driven system”, Eur. Phys. J. Spec. Top., 2024  crossref
    7. Viktoriya Petrakova, “Inverse Coefficient Problem for Epidemiological Mean-Field Formulation”, Mathematics, 12:22 (2024), 3581  crossref
    8. Svetozar Margenov, Nedyu Popivanov, Tsvetan Hristov, Veneta Koleva, “Computing the COVID-19 Basic and Effective Reproduction Numbers Using Actual Data: SEIRS Model with Vaccination and Hospitalization”, Mathematics, 12:24 (2024), 3998  crossref
    9. Sergey Misyurin, Andrey Nelubin, Alexander Trofimov, Anna Nozdracheva, Natalia Nosova, Nikolay Khokhlov, V.S. Pashtetsky, A.L. Ivanov, I. Kudaibergenova, L. Sembiyeva, “Research of COVID-19 infection waves using mathematical models at different levels”, BIO Web Conf., 141 (2024), 04043  crossref
    10. O. I. Krivorotko, S. I. Kabanikhin, M. A. Bektemesov, M. I. Sosnovskaya, A. V. Neverov, “Simulation of COVID-19 propagation scenarios in the Republic of Kazakhstan based on regularization of agent model”, J. Appl. Industr. Math., 17:1 (2023), 94–109  mathnet  crossref  mathscinet
    11. V. V. Vlasov, A. M. Deryabin, O. V. Zatsepin, G. D. Kaminskii, E. V. Karamov, A. L. Karmanov, S. N. Lebedev, G. N. Rykovanov, A. V. Sokolov, N. A. Teplykh, A. S. Turgiev, K. E. Khatuntsev, “Matematicheskoe modelirovanie zabolevaemosti COVID-19 v Moskve s primeneniem agentnoi modeli”, Diskretn. analiz i issled. oper., 30:2 (2023), 15–47  mathnet  crossref
    12. I. M. Azhmukhamedov, D. A. Machueva, “Modeling social attitude to introducing epidemic safety measures in a pandemic”, Control Sciences, 2023, no. 5, 56–64  mathnet  crossref  crossref
    13. L. V. Karaulova, V. M. Karaulov, A. V. Vishnyakov, “Mathematical and Statistical Model for Assessing the Impact of COVID-19 Waves on the Regional System (on the Example of the Kirov Region)”, Problemy analiza riska, 20:3 (2023), 60  crossref
    14. Olga Krivorotko, Sergey Kabanikhin, Victoriya Petrakova, “The Identifiability of Mathematical Models in Epidemiology: Tuberculosis, HIV, COVID-19”, Math.Biol.Bioinf., 18:1 (2023), 177  crossref
    15. Olga Krivorotko, Mariia Sosnovskaia, Sergey Kabanikhin, “Agent-based mathematical model of COVID-19 spread in Novosibirsk region: Identifiability, optimization and forecasting”, Journal of Inverse and Ill-posed Problems, 2023  crossref
    16. Ancy Kujur, S Vijayakumar Bharathi, Dhanya Pramod, 2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT), 2023, 101  crossref
    17. Andrey Reshetnikov, Vitalii Berdutin, Alexander Zaporozhtsev, Sergey Romanov, Olga Abaeva, Nadezhda Prisyazhnaya, Nadezhda Vyatkina, “Predictive algorithm for the regional spread of coronavirus infection across the Russian Federation”, BMC Med Inform Decis Mak, 23:1 (2023)  crossref
    18. Kseniya Sahatova, Aleksandr Kharlunin, Israel Huaman, Vasiliy Leonenko, Lecture Notes in Computer Science, 10475, Computational Science – ICCS 2023, 2023, 286  crossref
    19. Olga Krivorotko, Nikolay Zyatkov, 2023 5th International Conference on Problems of Cybernetics and Informatics (PCI), 2023, 1  crossref
    20. O. I. Krivorot'ko, N. Yu. Zyatkov, S. I. Kabanikhin, “Modeling epidemics: neural network based on data and SIR-model”, Comput. Math. Math. Phys., 63:10 (2023), 1929–1941  mathnet  mathnet  crossref  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:784
    Full-text PDF :155
    References:64
    First page:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025