Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2020, Volume 23, Number 4, Pages 395–414
DOI: https://doi.org/10.15372/SJNM20200404
(Mi sjvm756)
 

This article is cited in 34 scientific papers (total in 34 papers)

Mathematical modeling and forecasting of COVID-19 in Moscow and Novosibirsk region

O. I. Krivorotkoabc, S. I. Kabanikhincba, N. Yu. Zyatkovb, A. Yu. Prikhodkobca, N. M. Prokhoshinab, M. A. Shishlenincab

a Mathematical Center in Akademgorodok, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
c Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
References:
Abstract: We investigate the inverse problems of finding unknown parameters of the SEIR-HCD and SEIR-D mathematical models of the spread of COVID-19 coronavirus infection based on additional information about the number of detected cases, mortality, self-isolation coefficient and tests performed for the city of Moscow and the Novosibirsk region since 23.03.2020. In the SEIR-HCD model, the population is divided into seven, and in SEIR-D - into five groups with similar characteristics and with transition probabilities depending on a specific region. An analysis of the identifiability of the SEIR-HCD mathematical model was made, which revealed the least sensitive unknown parameters as related to additional information. The task of determining parameters is reduced to the minimization of objective functionals, which are solved by stochastic methods (simulated annealing, differential evolution, genetic algorithm). Prognostic scenarios for the disease development in Moscow and in the Novosibirsk region were developed and the applicability of the developed models was analyzed.
Key words: mathematical modeling, pandemic, COVID-19, SIER-HCD, SIER-D, scenarios, inverse problem, identifiability, optimization, differential evolution, annealing simulation, genetic algorithm, Moscow, Novosibirsk region.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1675
Russian Foundation for Basic Research 18-71-10044
This work was supported by the Russian Science Foundation under project no. 18-71-10044 (problem statement, identifiability analysis, and numerical solution of the forecasting problem for mathematical model SEIR-HCD, Sections 1, 3, and 4), and the Mathematical Center in Akademgorodok under agreement no. 075-15-2019-1675 with the Ministry of Science and Higher Education of the Russian Federation (formulation and numerical solution of the inverse problem for mathematical model SEIR-D, Sections 2 and 3).
Received: 20.07.2020
Revised: 30.07.2020
Accepted: 30.07.2020
English version:
Numerical Analysis and Applications, 2020, Volume 13, Issue 4, Pages 332–348
DOI: https://doi.org/10.1134/S1995423920040047
Bibliographic databases:
Document Type: Article
UDC: 519.62
Language: Russian
Citation: O. I. Krivorotko, S. I. Kabanikhin, N. Yu. Zyatkov, A. Yu. Prikhodko, N. M. Prokhoshin, M. A. Shishlenin, “Mathematical modeling and forecasting of COVID-19 in Moscow and Novosibirsk region”, Sib. Zh. Vychisl. Mat., 23:4 (2020), 395–414; Num. Anal. Appl., 13:4 (2020), 332–348
Citation in format AMSBIB
\Bibitem{KriKabZya20}
\by O.~I.~Krivorotko, S.~I.~Kabanikhin, N.~Yu.~Zyatkov, A.~Yu.~Prikhodko, N.~M.~Prokhoshin, M.~A.~Shishlenin
\paper Mathematical modeling and forecasting of COVID-19 in
Moscow and Novosibirsk region
\jour Sib. Zh. Vychisl. Mat.
\yr 2020
\vol 23
\issue 4
\pages 395--414
\mathnet{http://mi.mathnet.ru/sjvm756}
\crossref{https://doi.org/10.15372/SJNM20200404}
\transl
\jour Num. Anal. Appl.
\yr 2020
\vol 13
\issue 4
\pages 332--348
\crossref{https://doi.org/10.1134/S1995423920040047}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000600885900004}
Linking options:
  • https://www.mathnet.ru/eng/sjvm756
  • https://www.mathnet.ru/eng/sjvm/v23/i4/p395
  • This publication is cited in the following 34 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:724
    Full-text PDF :139
    References:56
    First page:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024