Abstract:
We investigate the inverse problems of finding unknown parameters of the SEIR-HCD and SEIR-D mathematical models of the spread of COVID-19 coronavirus infection based on additional information about the
number of detected cases, mortality, self-isolation coefficient and tests performed for the city of Moscow and
the Novosibirsk region since 23.03.2020. In the SEIR-HCD model, the population is divided into seven, and in
SEIR-D - into five groups with similar characteristics and with transition probabilities depending on a specific
region. An analysis of the identifiability of the SEIR-HCD mathematical model was made, which revealed the
least sensitive unknown parameters as related to additional information. The task of determining parameters
is reduced to the minimization of objective functionals, which are solved by stochastic methods (simulated annealing, differential evolution, genetic algorithm). Prognostic scenarios for the disease development in Moscow
and in the Novosibirsk region were developed and the applicability of the developed models was analyzed.
This work was supported by the Russian Science Foundation under project no. 18-71-10044
(problem statement, identifiability analysis, and numerical solution of the forecasting problem for mathematical model SEIR-HCD, Sections 1, 3, and 4), and the Mathematical Center in Akademgorodok
under agreement no. 075-15-2019-1675 with the Ministry of Science and Higher Education of the
Russian Federation (formulation and numerical solution of the inverse problem for mathematical model
SEIR-D, Sections 2 and 3).
Citation:
O. I. Krivorotko, S. I. Kabanikhin, N. Yu. Zyatkov, A. Yu. Prikhodko, N. M. Prokhoshin, M. A. Shishlenin, “Mathematical modeling and forecasting of COVID-19 in
Moscow and Novosibirsk region”, Sib. Zh. Vychisl. Mat., 23:4 (2020), 395–414; Num. Anal. Appl., 13:4 (2020), 332–348
\Bibitem{KriKabZya20}
\by O.~I.~Krivorotko, S.~I.~Kabanikhin, N.~Yu.~Zyatkov, A.~Yu.~Prikhodko, N.~M.~Prokhoshin, M.~A.~Shishlenin
\paper Mathematical modeling and forecasting of COVID-19 in
Moscow and Novosibirsk region
\jour Sib. Zh. Vychisl. Mat.
\yr 2020
\vol 23
\issue 4
\pages 395--414
\mathnet{http://mi.mathnet.ru/sjvm756}
\crossref{https://doi.org/10.15372/SJNM20200404}
\transl
\jour Num. Anal. Appl.
\yr 2020
\vol 13
\issue 4
\pages 332--348
\crossref{https://doi.org/10.1134/S1995423920040047}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000600885900004}
Linking options:
https://www.mathnet.ru/eng/sjvm756
https://www.mathnet.ru/eng/sjvm/v23/i4/p395
This publication is cited in the following 37 articles:
Viktoriya Petrakova, Olga Krivorotko, “Comparison of Two Mean Field Approaches to Modeling an Epidemic Spread”, J Optim Theory Appl, 204:3 (2025)
Ahmad Alhomaid, Abdullah H. Alzeer, Fahad Alsaawi, Abdulaziz Aljandal, Rami Al-Jafar, Marwan Albalawi, Dana Alotaibi, Raghad Alabdullatif, Razan AlGhassab, Dalia M. Mominkhan, Muaddi Alharbi, Ahmad A. Alghamdi, Maryam Almoklif, Mohammed K. Alabdulaali, “The impact of non-pharmaceutical interventions on the spread of COVID-19 in Saudi Arabia: Simulation approach”, Saudi Pharmaceutical Journal, 32:1 (2024), 101886
Olga Krivorotko, Sergey Kabanikhin, “Artificial intelligence for COVID-19 spread modeling”, Journal of Inverse and Ill-posed Problems, 32:2 (2024), 297
E. P. Krugova, E. E. Bukzhalev, “O matematicheskikh modelyakh virusologii, ispolzovannykh dlya izucheniya pandemii COVID-19”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody kraevykh zadach.
Pontryaginskie chteniya—XXXIV», Voronezh, 3-9 maya 2023 g. Chast 3, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 232, VINITI RAN, M., 2024, 122–139
Natalia Baturina, V.I. Pakhomov, A.N. Altybayev, M. Petković, T.A. Maltseva, “Calibrating the parameters of the cholera epidemic spread model”, BIO Web Conf., 113 (2024), 06015
Kexin Wei, Shaojuan Ma, “The identification for time-varying parameter and noise of tuberculosis with seasonal changes based on data-behavior-driven system”, Eur. Phys. J. Spec. Top., 2024
Viktoriya Petrakova, “Inverse Coefficient Problem for Epidemiological Mean-Field Formulation”, Mathematics, 12:22 (2024), 3581
Svetozar Margenov, Nedyu Popivanov, Tsvetan Hristov, Veneta Koleva, “Computing the COVID-19 Basic and Effective Reproduction Numbers Using Actual Data: SEIRS Model with Vaccination and Hospitalization”, Mathematics, 12:24 (2024), 3998
Sergey Misyurin, Andrey Nelubin, Alexander Trofimov, Anna Nozdracheva, Natalia Nosova, Nikolay Khokhlov, V.S. Pashtetsky, A.L. Ivanov, I. Kudaibergenova, L. Sembiyeva, “Research of COVID-19 infection waves using mathematical models at different levels”, BIO Web Conf., 141 (2024), 04043
O. I. Krivorotko, S. I. Kabanikhin, M. A. Bektemesov, M. I. Sosnovskaya, A. V. Neverov, “Simulation of COVID-19 propagation scenarios in the Republic of Kazakhstan based on regularization of agent model”, J. Appl. Industr. Math., 17:1 (2023), 94–109
V. V. Vlasov, A. M. Deryabin, O. V. Zatsepin, G. D. Kaminskii, E. V. Karamov, A. L. Karmanov, S. N. Lebedev, G. N. Rykovanov, A. V. Sokolov, N. A. Teplykh, A. S. Turgiev, K. E. Khatuntsev, “Matematicheskoe modelirovanie zabolevaemosti COVID-19 v Moskve s primeneniem agentnoi modeli”, Diskretn. analiz i issled. oper., 30:2 (2023), 15–47
I. M. Azhmukhamedov, D. A. Machueva, “Modeling social attitude to introducing epidemic safety measures in a pandemic”, Control Sciences, 2023, no. 5, 56–64
L. V. Karaulova, V. M. Karaulov, A. V. Vishnyakov, “Mathematical and Statistical Model for Assessing the Impact of COVID-19 Waves on the Regional System (on the Example of the Kirov Region)”, Problemy analiza riska, 20:3 (2023), 60
Olga Krivorotko, Sergey Kabanikhin, Victoriya Petrakova, “The Identifiability of Mathematical Models in Epidemiology: Tuberculosis, HIV, COVID-19”, Math.Biol.Bioinf., 18:1 (2023), 177
Olga Krivorotko, Mariia Sosnovskaia, Sergey Kabanikhin, “Agent-based mathematical model of COVID-19 spread in Novosibirsk region: Identifiability, optimization and forecasting”, Journal of Inverse and Ill-posed Problems, 2023
Ancy Kujur, S Vijayakumar Bharathi, Dhanya Pramod, 2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT), 2023, 101
Andrey Reshetnikov, Vitalii Berdutin, Alexander Zaporozhtsev, Sergey Romanov, Olga Abaeva, Nadezhda Prisyazhnaya, Nadezhda Vyatkina, “Predictive algorithm for the regional spread of coronavirus infection across the Russian Federation”, BMC Med Inform Decis Mak, 23:1 (2023)
Kseniya Sahatova, Aleksandr Kharlunin, Israel Huaman, Vasiliy Leonenko, Lecture Notes in Computer Science, 10475, Computational Science – ICCS 2023, 2023, 286
Olga Krivorotko, Nikolay Zyatkov, 2023 5th International Conference on Problems of Cybernetics and Informatics (PCI), 2023, 1
O. I. Krivorot'ko, N. Yu. Zyatkov, S. I. Kabanikhin, “Modeling epidemics: neural network based on data and SIR-model”, Comput. Math. Math. Phys., 63:10 (2023), 1929–1941