Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2020, Volume 23, Number 3, Pages 233–248
DOI: https://doi.org/10.15372/SJNM20200301
(Mi sjvm745)
 

This article is cited in 6 scientific papers (total in 6 papers)

On a posteriori estimation of the approximation error norm for an ensemble of independent solutions

A. K. Alekseev, A. E. Bondarev

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047 Russia
References:
Abstract: An ensemble of independent numerical solutions enables one to construct a hypersphere around the approximate solution that contains the true solution. The analysis is based on some geometry considerations, such as the triangle inequality and the measure concentration in the spaces of large dimensions. As a result, there appears the feasibility for non-intrusive postprocessing that provides the error estimation on the ensemble of solutions. The numerical tests for two-dimensional compressible Euler equations are provided that demonstrates properties of such postprocessing.
Key words: discretization error, ensemble of numerical solutions, measure concentration, Euler equations.
Received: 06.09.2018
Revised: 07.05.2019
Accepted: 16.04.2020
English version:
Numerical Analysis and Applications, 2020, Volume 13, Issue 3, Pages 195–206
DOI: https://doi.org/10.1134/S1995423920030015
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: A. K. Alekseev, A. E. Bondarev, “On a posteriori estimation of the approximation error norm for an ensemble of independent solutions”, Sib. Zh. Vychisl. Mat., 23:3 (2020), 233–248; Num. Anal. Appl., 13:3 (2020), 195–206
Citation in format AMSBIB
\Bibitem{AleBon20}
\by A.~K.~Alekseev, A.~E.~Bondarev
\paper On a posteriori estimation of the approximation error norm for an ensemble of independent solutions
\jour Sib. Zh. Vychisl. Mat.
\yr 2020
\vol 23
\issue 3
\pages 233--248
\mathnet{http://mi.mathnet.ru/sjvm745}
\crossref{https://doi.org/10.15372/SJNM20200301}
\transl
\jour Num. Anal. Appl.
\yr 2020
\vol 13
\issue 3
\pages 195--206
\crossref{https://doi.org/10.1134/S1995423920030015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000566356600001}
Linking options:
  • https://www.mathnet.ru/eng/sjvm745
  • https://www.mathnet.ru/eng/sjvm/v23/i3/p233
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:155
    Full-text PDF :58
    References:33
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024