Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2020, Volume 23, Number 2, Pages 117–125
DOI: https://doi.org/10.15372/SJNM20200201
(Mi sjvm737)
 

This article is cited in 1 scientific paper (total in 1 paper)

The numerical solution of the direct Zakharov–Shabat scattering problem

N. I. Gorbenkoab, V. P. Il'inab, A. M. Krylovb, L. L. Fruminca

a Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia
b Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent’eva 6, Novosibirsk, 630090 Russia
c Institute of Automation and Electrometry Siberian Branch, Russian Academy of Sciences, pr. Akad. Koptyuga 1, Novosibirsk, 630090 Russia
Full-text PDF (477 kB) Citations (1)
References:
Abstract: The numerical solution of the direct scattering problem for a system of the Zakharov–Shabat equations is considered. Based on the Marchuk identity, a fourth order method of approximation accuracy is proposed. The numerical simulation of the scattering problem is carried out using an example of two characteristic boundary value problems with known solutions. The calculations have confirmed high accuracy of the algorithm proposed, which is necessary in a number of practical applications for optical and acoustic sensing of media in optics and geophysics applied.
Key words: direct scattering problem, fourth order difference scheme, Marchuk identity.
Funding agency Grant number
Russian Foundation for Basic Research 16-29-15122 офи-м
Russian Science Foundation 17-72-30006
Ministry of Science and Higher Education of the Russian Federation 1201364502 (ЛЛФ)
This work was supported by the Russian Foundation for Basic Research (project no.В 16-29-15122 ofi-m), by the Russian Science Foundation (project no.В 17-72-30006), and by the Ministry of Science and Education of the Russian Federation (project no.В 1201364502 (LLF)).
Received: 29.05.2019
Revised: 24.10.2019
Accepted: 19.12.2019
English version:
Numerical Analysis and Applications, 2020, Volume 13, Issue 2, Pages 95–102
DOI: https://doi.org/10.1134/S1995423920020019
Bibliographic databases:
Document Type: Article
UDC: 53.082.531, 53.082.532, 519.6
Language: Russian
Citation: N. I. Gorbenko, V. P. Il'in, A. M. Krylov, L. L. Frumin, “The numerical solution of the direct Zakharov–Shabat scattering problem”, Sib. Zh. Vychisl. Mat., 23:2 (2020), 117–125; Num. Anal. Appl., 13:2 (2020), 95–102
Citation in format AMSBIB
\Bibitem{GorIliKry20}
\by N.~I.~Gorbenko, V.~P.~Il'in, A.~M.~Krylov, L.~L.~Frumin
\paper The numerical solution of the direct Zakharov--Shabat scattering problem
\jour Sib. Zh. Vychisl. Mat.
\yr 2020
\vol 23
\issue 2
\pages 117--125
\mathnet{http://mi.mathnet.ru/sjvm737}
\crossref{https://doi.org/10.15372/SJNM20200201}
\elib{https://elibrary.ru/item.asp?id=42869902}
\transl
\jour Num. Anal. Appl.
\yr 2020
\vol 13
\issue 2
\pages 95--102
\crossref{https://doi.org/10.1134/S1995423920020019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000543438700001}
Linking options:
  • https://www.mathnet.ru/eng/sjvm737
  • https://www.mathnet.ru/eng/sjvm/v23/i2/p117
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:237
    Full-text PDF :67
    References:37
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025