Abstract:
The presence of the nonlocal term in the nonlocal problems destroys the sparsity of the Jacobian matrices when solving the problem numerically using finite element method and Newton–Raphson method. As a consequence, computations consume more time and space in contrast to local problems. To overcome this difficulty, this paper is devoted to the analysis of a linearized Theta–Galerkin finite element method for the time-dependent nonlocal problem with nonlinearity of Kirchhoff type. Hereby, we focus on time discretization based on θ-time stepping scheme with θ∈[1/2,1). Some a error estimates are derived for the standard Crank–Nicolson (θ=1/2), the shifted Crank–Nicolson (θ=1/2+δ, δ is the time-step) and the general case (θ≠1/2+kδ, k=0,1). Finally, numerical simulations that validate the theoretical findings are exhibited.
Citation:
M. Mbehou, G. Chendjou, “Numerical methods for a nonlocal parabolic problem with nonlinearity of Kirchhoff type”, Sib. Zh. Vychisl. Mat., 22:3 (2019), 301–313; Num. Anal. Appl., 12:3 (2019), 251–262
\Bibitem{MbeChe19}
\by M.~Mbehou, G.~Chendjou
\paper Numerical methods for a nonlocal parabolic problem with nonlinearity of Kirchhoff type
\jour Sib. Zh. Vychisl. Mat.
\yr 2019
\vol 22
\issue 3
\pages 301--313
\mathnet{http://mi.mathnet.ru/sjvm716}
\crossref{https://doi.org/10.15372/SJNM20190304}
\elib{https://elibrary.ru/item.asp?id=38303549}
\transl
\jour Num. Anal. Appl.
\yr 2019
\vol 12
\issue 3
\pages 251--262
\crossref{https://doi.org/10.1134/S1995423919030042}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000485274000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071906244}
Linking options:
https://www.mathnet.ru/eng/sjvm716
https://www.mathnet.ru/eng/sjvm/v22/i3/p301
This publication is cited in the following 3 articles:
M.S. Daoussa Haggar, M. Mbehou, “Optimal error estimates of a linearized second-order BDF scheme for a nonlocal parabolic problem”, AJMS, 30:1 (2024), 112
Huaijun Yang, Dongyang Shi, “Optimal error estimates of Galerkin method for a nonlinear parabolic integro-differential equation”, Applied Numerical Mathematics, 181 (2022), 403
M. Mbehou, M.S. Daoussa Haggar, P.M. Tchepmo Djomegni, “Finite element method for nonlocal problems of Kirchhoff-type in domains with moving boundary”, Scientific African, 16 (2022), e01256