Abstract:
In this paper, stochastic differential equations (SDEs) with the first integral are considered. The exact solution of such SDEs belongs to a smooth manifold with probability 1. However, the numerical solution does not belong to the manifold, but it belongs to some of its neighborhood due to the numerical error. The main objective of the paper is to construct modified numerical methods for solving SDEs that preserve the first integral. In this study, exact solutions for three SDE systems with the first integral are obtained, and the proposed modification of numerical methods is tested on these systems.
This work was supported by Institute of Computational Mathematics and Mathematical Geophysics,
SB RAS (State target project no. 0315-2016-0002) and by the Russian Foundation for Basic Research
(project no. 17-08-00530-a).
Citation:
T. A. Averina, K. A. Rybakov, “A modification of numerical methods for stochastic differential equations with the first integral”, Sib. Zh. Vychisl. Mat., 22:3 (2019), 243–259; Num. Anal. Appl., 12:3 (2019), 203–218
\Bibitem{AveRyb19}
\by T.~A.~Averina, K.~A.~Rybakov
\paper A modification of numerical methods for stochastic differential equations with the first integral
\jour Sib. Zh. Vychisl. Mat.
\yr 2019
\vol 22
\issue 3
\pages 243--259
\mathnet{http://mi.mathnet.ru/sjvm713}
\crossref{https://doi.org/10.15372/SJNM20190301}
\elib{https://elibrary.ru/item.asp?id=38303546}
\transl
\jour Num. Anal. Appl.
\yr 2019
\vol 12
\issue 3
\pages 203--218
\crossref{https://doi.org/10.1134/S1995423919030017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000485274000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071781454}
Linking options:
https://www.mathnet.ru/eng/sjvm713
https://www.mathnet.ru/eng/sjvm/v22/i3/p243
This publication is cited in the following 7 articles:
T. A. Averina, K. A. Rybakov, “Metody tipa Rozenbroka dlya resheniya stokhasticheskikh differentsialnykh uravnenii”, Sib. zhurn. vychisl. matem., 27:2 (2024), 123–145
T. A. Averina, K. A. Rybakov, “Rosenbrock-Type Methods for Solving Stochastic Differential Equations”, Numer. Analys. Appl., 17:2 (2024), 99
Simon Schwarz, Michael Herrmann, Anja Sturm, Max Wardetzky, “Efficient Random Walks on Riemannian Manifolds”, Found Comput Math, 2023
John Armstrong, Tim King, “Curved schemes for stochastic differential equations on, or near, manifolds”, Proc. R. Soc. A., 478:2262 (2022)
Zh. Ma, Sh. Yu, Ya. Han, D. Guo, “Zeroing neural network for bound-constrained time-varying nonlinear equation solving and its application to mobile robot manipulators”, Neural Comput. Appl., 33:21 (2021), 14231–14245
Irina A. Kudryavtseva, Konstantin A. Rybakov, Smart Innovation, Systems and Technologies, 217, Applied Mathematics and Computational Mechanics for Smart Applications, 2021, 245
T. A. Averina, K. A. Rybakov, “Using maximum cross section method for filtering jump-diffusion random processes”, Russ. J. Numer. Anal. Math. Model, 35:2 (2020), 55–67