Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2019, Volume 22, Number 2, Pages 213–228
DOI: https://doi.org/10.15372/SJNM20190207
(Mi sjvm711)
 

This article is cited in 5 scientific papers (total in 5 papers)

Parameter-uniform numerical methods for a class of parameterized singular perturbation problems

D. Shakti, J. Mohapatra

Department of Mathematics, National Institute of Technology Rourkela, 769008, India
References:
Abstract: In this article, a weighted finite difference scheme is proposed for solving a class of parameterized singularly perturbed problems (SPPs). Depending upon the choice of the weight parameter, the scheme is automatically transformed from the backward Euler scheme to a monotone hybrid scheme. Three kinds of nonuniform grids are considered: a standard Shishkin mesh, a Bakhavalov–Shishkin mesh, and an adaptive grid. The methods are shown to be uniformly convergent with respect to the perturbation parameter for all three types of meshes. The rate of convergence is of first order for the backward Euler scheme and of second order for the monotone hybrid scheme. Furthermore, the proposed method is extended to a parameterized problem with mixed type boundary conditions and is shown to be uniformly convergent. Numerical experiments are carried out to show the efficiency of the proposed schemes, which indicate that the estimates are optimal.
Key words: parameterized problem, singular perturbation, boundary layer, backward Euler method, monotone hybrid scheme.
Funding agency Grant number
Department of Science and Technology, India IF 150650
Council of Scientific and Industrial Research 25(0231)/14/EMR-II
The first author was supported by the Department of Science and Technology (DST) of the Ministry of Science and Technology of India (IF no. 150650). The second author was supported by the Council of Scientific and Industrial Research (CSIR) of the Government of India (research grant no. 25(0231)/14/EMR-II).
Received: 27.11.2017
Revised: 12.06.2018
Accepted: 21.01.2019
English version:
Numerical Analysis and Applications, 2019, Volume 12, Issue 2, Pages 176–190
DOI: https://doi.org/10.1134/S1995423919020071
Bibliographic databases:
Document Type: Article
MSC: 65L10, 65L12
Language: Russian
Citation: D. Shakti, J. Mohapatra, “Parameter-uniform numerical methods for a class of parameterized singular perturbation problems”, Sib. Zh. Vychisl. Mat., 22:2 (2019), 213–228; Num. Anal. Appl., 12:2 (2019), 176–190
Citation in format AMSBIB
\Bibitem{ShaMoh19}
\by D.~Shakti, J.~Mohapatra
\paper Parameter-uniform numerical methods for a class of parameterized singular perturbation problems
\jour Sib. Zh. Vychisl. Mat.
\yr 2019
\vol 22
\issue 2
\pages 213--228
\mathnet{http://mi.mathnet.ru/sjvm711}
\crossref{https://doi.org/10.15372/SJNM20190207}
\elib{https://elibrary.ru/item.asp?id=38170582}
\transl
\jour Num. Anal. Appl.
\yr 2019
\vol 12
\issue 2
\pages 176--190
\crossref{https://doi.org/10.1134/S1995423919020071}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000470691500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066812065}
Linking options:
  • https://www.mathnet.ru/eng/sjvm711
  • https://www.mathnet.ru/eng/sjvm/v22/i2/p213
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:200
    Full-text PDF :71
    References:30
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024