Abstract:
Randomized algorithms of Monte Carlo method are constructed by the combined realization of the base probabilistic model and its random parameters for investigation of the parametric distribution of linear functionals. The optimization of algorithms with the use of the statistical kernel estimator for the probability density is presented. The randomized projection algorithm for estimating a nonlinear functional distribution as applied to the investigation of criticality fluctuations for the particles multiplication process in a random medium is formulated.
Key words:
probabilistic model, statistic modeling, random parameter, randomized algorithm, double randomization method, random medium, splitting method, statistic kernel estimator.
This work was performed within the framework of the State Order for the SB RAS Institute of Computational Mathematics and Mathematical Geophysics (project no. 0315-2016-0002) and was partly supported by the Russian Foundation for Basic Research (project nos. 16-01-00530, 17-01-00823, and 18-01-00356).
Citation:
G. A. Mikhailov, “Randomized algorithms of Monte Carlo method for problems with random parameters (“double randomization” method)”, Sib. Zh. Vychisl. Mat., 22:2 (2019), 187–200; Num. Anal. Appl., 12:2 (2019), 155–165
\Bibitem{Mik19}
\by G.~A.~Mikhailov
\paper Randomized algorithms of Monte Carlo method for problems with random parameters (“double randomization” method)
\jour Sib. Zh. Vychisl. Mat.
\yr 2019
\vol 22
\issue 2
\pages 187--200
\mathnet{http://mi.mathnet.ru/sjvm709}
\crossref{https://doi.org/10.15372/SJNM20190205}
\elib{https://elibrary.ru/item.asp?id=38170580}
\transl
\jour Num. Anal. Appl.
\yr 2019
\vol 12
\issue 2
\pages 155--165
\crossref{https://doi.org/10.1134/S1995423919020058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000470691500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066811828}
Linking options:
https://www.mathnet.ru/eng/sjvm709
https://www.mathnet.ru/eng/sjvm/v22/i2/p187
This publication is cited in the following 10 articles:
Cyril Caliot, Louis d'Alençon, Stéphane Blanco, Vincent Forest, Richard Fournier, Frédéric Hourdin, Florent Retailleau, Robert Schoetter, Najda Villefranque, “Coupled heat transfers resolution by Monte Carlo in urban geometry including direct and diffuse solar irradiations”, International Journal of Heat and Mass Transfer, 222 (2024), 125139
G. A. Mikhailov, I. N. Medvedev, “New Computer Efficient Approximations of Random Functions for Solving Stochastic Transport Problems”, Comput. Math. and Math. Phys., 64:2 (2024), 314
G. A. Mikhailov, G. Z. Lotova, I. N. Medvedev, “Effektivno realizuemye priblizhennye modeli sluchainykh funktsii v stokhasticheskikh zadachakh teorii perenosa chastits”, Sib. zhurn. vychisl. matem., 27:2 (2024), 189–209
Olga D. Rozhenko, Anna D. Darzhaniya, Victoria V. Bondar, Marine V. Mirzoian, Olga I. Skvortsova, Lecture Notes in Networks and Systems, 1044, Current Problems of Applied Mathematics and Computer Systems, 2024, 454
Ilia N. Medvedev, “On the efficiency of using correlative randomized algorithms for solving problems of gamma radiation transfer in stochastic medium”, Russian Journal of Numerical Analysis and Mathematical Modelling, 37:4 (2022), 231
G. A. Mikhailov, I. N. Medvedev, “New correlative randomized algorithms for statistical modelling of radiation transfer in stochastic medium”, Russ. J. Numer. Anal. Math. Model, 36:4 (2021), 219–225
G. A. Mikhailov, I. N. Medvedev, “New correlative randomized algorithm for estimating the influence of the medium stochasticity on particle transport”, Dokl. Math., 103:3 (2021), 143–145
E. G. Kablukova, S. M. Prigarin, “Influence of unbroken clouds stochastic structure on the solar radiation transfer with results of Monte Carlo simulation”, Russ. J. Numer. Anal. Math. Model, 36:2 (2021), 75–86
T. Bulgakova, A. V. Voitishek, “Conditional optimization of the functional computational kernel algorithm for approximating the probability density on the basis of a given sample”, Comput. Math. Math. Phys., 61:9 (2021), 1401–1415
A. Burmistrov, M. Korotchenko, “Double randomization method for estimating the moments of solution to vehicular traffic problems with random parameters”, Russ. J. Numer. Anal. Math. Model, 35:3 (2020), 143–152