Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2019, Volume 22, Number 2, Pages 187–200
DOI: https://doi.org/10.15372/SJNM20190205
(Mi sjvm709)
 

This article is cited in 10 scientific papers (total in 10 papers)

Randomized algorithms of Monte Carlo method for problems with random parameters (“double randomization” method)

G. A. Mikhailovab

a Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent'eva 6, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia
References:
Abstract: Randomized algorithms of Monte Carlo method are constructed by the combined realization of the base probabilistic model and its random parameters for investigation of the parametric distribution of linear functionals. The optimization of algorithms with the use of the statistical kernel estimator for the probability density is presented. The randomized projection algorithm for estimating a nonlinear functional distribution as applied to the investigation of criticality fluctuations for the particles multiplication process in a random medium is formulated.
Key words: probabilistic model, statistic modeling, random parameter, randomized algorithm, double randomization method, random medium, splitting method, statistic kernel estimator.
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations 0315-2016-0002
Russian Foundation for Basic Research 16-01-00530_а
17-01-00823_а
18-01-00356_а
This work was performed within the framework of the State Order for the SB RAS Institute of Computational Mathematics and Mathematical Geophysics (project no. 0315-2016-0002) and was partly supported by the Russian Foundation for Basic Research (project nos. 16-01-00530, 17-01-00823, and 18-01-00356).
Received: 21.06.2018
Accepted: 21.01.2019
English version:
Numerical Analysis and Applications, 2019, Volume 12, Issue 2, Pages 155–165
DOI: https://doi.org/10.1134/S1995423919020058
Bibliographic databases:
Document Type: Article
UDC: 519.676
Language: Russian
Citation: G. A. Mikhailov, “Randomized algorithms of Monte Carlo method for problems with random parameters (“double randomization” method)”, Sib. Zh. Vychisl. Mat., 22:2 (2019), 187–200; Num. Anal. Appl., 12:2 (2019), 155–165
Citation in format AMSBIB
\Bibitem{Mik19}
\by G.~A.~Mikhailov
\paper Randomized algorithms of Monte Carlo method for problems with random parameters (“double randomization” method)
\jour Sib. Zh. Vychisl. Mat.
\yr 2019
\vol 22
\issue 2
\pages 187--200
\mathnet{http://mi.mathnet.ru/sjvm709}
\crossref{https://doi.org/10.15372/SJNM20190205}
\elib{https://elibrary.ru/item.asp?id=38170580}
\transl
\jour Num. Anal. Appl.
\yr 2019
\vol 12
\issue 2
\pages 155--165
\crossref{https://doi.org/10.1134/S1995423919020058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000470691500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066811828}
Linking options:
  • https://www.mathnet.ru/eng/sjvm709
  • https://www.mathnet.ru/eng/sjvm/v22/i2/p187
  • This publication is cited in the following 10 articles:
    1. Cyril Caliot, Louis d'Alençon, Stéphane Blanco, Vincent Forest, Richard Fournier, Frédéric Hourdin, Florent Retailleau, Robert Schoetter, Najda Villefranque, “Coupled heat transfers resolution by Monte Carlo in urban geometry including direct and diffuse solar irradiations”, International Journal of Heat and Mass Transfer, 222 (2024), 125139  crossref
    2. G. A. Mikhailov, I. N. Medvedev, “New Computer Efficient Approximations of Random Functions for Solving Stochastic Transport Problems”, Comput. Math. and Math. Phys., 64:2 (2024), 314  crossref
    3. G. A. Mikhailov, G. Z. Lotova, I. N. Medvedev, “Effektivno realizuemye priblizhennye modeli sluchainykh funktsii v stokhasticheskikh zadachakh teorii perenosa chastits”, Sib. zhurn. vychisl. matem., 27:2 (2024), 189–209  mathnet  crossref
    4. Olga D. Rozhenko, Anna D. Darzhaniya, Victoria V. Bondar, Marine V. Mirzoian, Olga I. Skvortsova, Lecture Notes in Networks and Systems, 1044, Current Problems of Applied Mathematics and Computer Systems, 2024, 454  crossref
    5. Ilia N. Medvedev, “On the efficiency of using correlative randomized algorithms for solving problems of gamma radiation transfer in stochastic medium”, Russian Journal of Numerical Analysis and Mathematical Modelling, 37:4 (2022), 231  crossref
    6. G. A. Mikhailov, I. N. Medvedev, “New correlative randomized algorithms for statistical modelling of radiation transfer in stochastic medium”, Russ. J. Numer. Anal. Math. Model, 36:4 (2021), 219–225  crossref  mathscinet  isi  scopus
    7. G. A. Mikhailov, I. N. Medvedev, “New correlative randomized algorithm for estimating the influence of the medium stochasticity on particle transport”, Dokl. Math., 103:3 (2021), 143–145  mathnet  crossref  crossref  zmath  elib
    8. E. G. Kablukova, S. M. Prigarin, “Influence of unbroken clouds stochastic structure on the solar radiation transfer with results of Monte Carlo simulation”, Russ. J. Numer. Anal. Math. Model, 36:2 (2021), 75–86  crossref  mathscinet  isi
    9. T. Bulgakova, A. V. Voitishek, “Conditional optimization of the functional computational kernel algorithm for approximating the probability density on the basis of a given sample”, Comput. Math. Math. Phys., 61:9 (2021), 1401–1415  mathnet  mathnet  crossref  crossref  isi  scopus
    10. A. Burmistrov, M. Korotchenko, “Double randomization method for estimating the moments of solution to vehicular traffic problems with random parameters”, Russ. J. Numer. Anal. Math. Model, 35:3 (2020), 143–152  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:388
    Full-text PDF :118
    References:48
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025