Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2019, Volume 22, Number 1, Pages 99–117
DOI: https://doi.org/10.15372/SJNM20190107
(Mi sjvm703)
 

This article is cited in 11 scientific papers (total in 11 papers)

An efficient direct method for the numerical solution to the Cauchy problem for the Laplace equation

S. B. Sorokinab

a Novosibirsk State University, st. Pirogova 2, Novosibirsk, 630090, Russia
b Institute of Computational Mathematics and Mathematical Geophysics SB RAS, pr. Akad. Lavrentjeva 6, Novosibirsk, 630090, Russia
References:
Abstract: One of widespread approaches to solving the Cauchy problem for the Laplace equation is to reduce it to the inverse problem. As a rule, an iterative procedure to solve the latter is used. In this study, an efficient direct method for the numerical solution of the inverse problem in the rectangular form is described. The main idea is based on the expansion of the desired solution with respect to a basis consisting of eigenfunctions of a difference analogue of the Laplace operator.
Key words: Cauchy problem for Laplace equation, inverse problem, numerical solution, efficient direct method.
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations
This work was supported by Basic Research Program of the Department of Mathematical Sciences of the Russian Academy of Sciences on Modern Computational and Informational Technologies for Large Problems and RAS Presidium under Program on Intelligent Information Technologies, Mathematical Modeling, System Analysis, and Automatization.
Received: 28.12.2017
Revised: 06.06.2018
Accepted: 05.10.2018
English version:
Numerical Analysis and Applications, 2019, Volume 12, Issue 1, Pages 87–103
DOI: https://doi.org/10.1134/S1995423919010075
Bibliographic databases:
Document Type: Article
UDC: 519.632
Language: Russian
Citation: S. B. Sorokin, “An efficient direct method for the numerical solution to the Cauchy problem for the Laplace equation”, Sib. Zh. Vychisl. Mat., 22:1 (2019), 99–117; Num. Anal. Appl., 12:1 (2019), 87–103
Citation in format AMSBIB
\Bibitem{Sor19}
\by S.~B.~Sorokin
\paper An efficient direct method for the numerical solution to the Cauchy problem for the Laplace equation
\jour Sib. Zh. Vychisl. Mat.
\yr 2019
\vol 22
\issue 1
\pages 99--117
\mathnet{http://mi.mathnet.ru/sjvm703}
\crossref{https://doi.org/10.15372/SJNM20190107}
\elib{https://elibrary.ru/item.asp?id=37062943}
\transl
\jour Num. Anal. Appl.
\yr 2019
\vol 12
\issue 1
\pages 87--103
\crossref{https://doi.org/10.1134/S1995423919010075}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000463783600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064057668}
Linking options:
  • https://www.mathnet.ru/eng/sjvm703
  • https://www.mathnet.ru/eng/sjvm/v22/i1/p99
  • This publication is cited in the following 11 articles:
    1. E. B. Laneev, A. V. Klimishin, “O priblizhennom reshenii nekorrektno postavlennoi smeshannoi kraevoi zadachi dlya uravneniya Laplasa v tsilindricheskoi oblasti s odnorodnymi usloviyami vtorogo roda na bokovoi poverkhnosti tsilindra”, Vestnik rossiiskikh universitetov. Matematika, 29:146 (2024), 164–175  mathnet  crossref
    2. N. E. Sibiryakov, D. Yu. Kochkin, O. A. Kabov, A. L. Karchevsky, “Determination of the heat flux density in the region of the contact line during evaporation of a liquid into a bubble”, J. Appl. Industr. Math., 17:3 (2023), 628–639  mathnet  crossref  crossref
    3. S. B. Sorokin, “Difference method for calculating the heat flux at an inaccessible boundary in the problem of heat conduction”, J. Appl. Industr. Math., 17:3 (2023), 651–663  mathnet  crossref  crossref
    4. Andrey L. Ushakov, “Investigation of the problem of representation of a linear functional in the form of a scoal product”, Yugra State University Bulletin, 18:3 (2022), 152  crossref
    5. A. L. Ushakov, “Analiz zadachi dlya bigarmonicheskogo uravneniya”, J. Comp. Eng. Math., 9:1 (2022), 43–58  mathnet  crossref
    6. A. L. Ushakov, E. A. Meltsaykin, “Analiz bigarmonicheskikh i garmonicheskikh modelei metodami iteratsionnykh rasshirenii”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 15:3 (2022), 51–66  mathnet  crossref
    7. S. B. Sorokin, “Direct method for solving the inverse coefficient problem for elliptic equation with piecewise constant coefficients”, J. Appl. Industr. Math., 15:2 (2021), 331–342  mathnet  crossref  crossref  elib
    8. A. L. Ushakov, “Chislennyi analiz smeshannoi kraevoi zadachi dlya uravneniya Sofi Zhermen”, J. Comp. Eng. Math., 8:1 (2021), 46–59  mathnet  crossref
    9. A. L. Ushakov, “Analysis of the mixed boundary value problem for the Poisson's equation”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 13:1 (2021), 29–40  mathnet  mathnet  crossref
    10. A. L. Ushakov, 2020 International Russian Automation Conference (RusAutoCon), 2020, 273  crossref
    11. S. B. Sorokin, “An implicit iterative method for numerical solution of the Cauchy problem for elliptic equations”, J. Appl. Industr. Math., 13:4 (2019), 759–770  mathnet  crossref  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:371
    Full-text PDF :76
    References:67
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025