Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2019, Volume 22, Number 1, Pages 57–79
DOI: https://doi.org/10.15372/SJNM20190105
(Mi sjvm701)
 

This article is cited in 13 scientific papers (total in 13 papers)

The Newton–Kantorovich method in inverse source problems for production-destruction models with time series-type measurement data

A. V. Penenkoab

a Novosibirsk State University, st. Pirogova 2, Novosibirsk, 630090, Russia
b Institute of Computational Mathematics and Mathematical Geophysics SB RAS, pr. Akad. Lavrentjeva 6, Novosibirsk, 630090, Russia
References:
Abstract: The algorithms for solving the inverse source problem for the production–destruction type systems of nonlinear ordinary differential equations with measurement data in the form of time series are presented. The sensitivity operator and its discrete analogue on the basis of adjoint equations are constructed. This operator binds the perturbations in the unknown parameters of the model to those of the measured values. The operator allows one to construct a family of quasi-linear operator equations linking the required unknown parameters and the data of the inverse problem. The Newton–Kantorovich type method with right-hand side rr-pseudoinverse matrices is used to solve the equations. The algorithm is applied to solving the inverse source problem for the atmospheric impurities transformation model.
Key words: inverse source problem, big data, Newton–Kantorovich method, adjoint equations, sensitivity operator, rr-pseudoinverse matrix, right inverse.
Funding agency Grant number
Russian Science Foundation 17-71-10184
Ministry of Education and Science of the Russian Federation
This work was supported by the Russian Science Foundation (project no. 17-71-10184 for the development of algorithms and their study) and by the Ministry of Education and Science of the Russian Federation (project no. 4.1.3, joint laboratories of NSU–NSC SB RAS for the vectorization and optimization of the software).
Received: 26.02.2018
Revised: 24.05.2018
Accepted: 05.10.2018
English version:
Numerical Analysis and Applications, 2019, Volume 12, Issue 1, Pages 51–69
DOI: https://doi.org/10.1134/S1995423919010051
Bibliographic databases:
Document Type: Article
UDC: 517.988, 519.62
Language: Russian
Citation: A. V. Penenko, “The Newton–Kantorovich method in inverse source problems for production-destruction models with time series-type measurement data”, Sib. Zh. Vychisl. Mat., 22:1 (2019), 57–79; Num. Anal. Appl., 12:1 (2019), 51–69
Citation in format AMSBIB
\Bibitem{Pen19}
\by A.~V.~Penenko
\paper The Newton--Kantorovich method in inverse source problems for production-destruction models with time series-type measurement data
\jour Sib. Zh. Vychisl. Mat.
\yr 2019
\vol 22
\issue 1
\pages 57--79
\mathnet{http://mi.mathnet.ru/sjvm701}
\crossref{https://doi.org/10.15372/SJNM20190105}
\elib{https://elibrary.ru/item.asp?id=37062941}
\transl
\jour Num. Anal. Appl.
\yr 2019
\vol 12
\issue 1
\pages 51--69
\crossref{https://doi.org/10.1134/S1995423919010051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000463783600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064040339}
Linking options:
  • https://www.mathnet.ru/eng/sjvm701
  • https://www.mathnet.ru/eng/sjvm/v22/i1/p57
  • This publication is cited in the following 13 articles:
    1. Gurami Tsitsiashvili, Alexey Gudimenko, Marina Osipova, “Fast Method for Estimating the Parameters of Partial Differential Equations from Inaccurate Observations”, Mathematics, 11:22 (2023), 4586  crossref
    2. Gurami Tsitsiashvili, Marina Osipova, Yury Kharchenko, “Estimating the Coefficients of a System of Ordinary Differential Equations Based on Inaccurate Observations”, Mathematics, 10:3 (2022), 502  crossref
    3. Alexey Penenko, Evgeny Rusin, “Parallel Implementation of a Sensitivity Operator-Based Source Identification Algorithm for Distributed Memory Computers”, Mathematics, 10:23 (2022), 4522  crossref
    4. A. Penenko, V. Penenko, E. Tsvetova, A. Gochakov, E. Pyanova, V. Konopleva, “Sensitivity operator framework for analyzing heterogeneous air quality monitoring systems”, Atmosphere, 12:12 (2021), 1697  crossref  isi  scopus
    5. A. V. Penenko, Zh. S. Mukatova, A. B. Salimova, “Numerical study of the coefficient identification algorithm based on ensembles of adjoint problem solutions for a production-destruction model”, Int. J. Nonlinear Sci. Numer. Simul., 22:5 (2021), 581–592  crossref  mathscinet  isi  scopus
    6. G. Gallo, A. Isoldi, D. Del Gatto, R. Savino, A. Capozzoli, C. Curcio, A. Liseno, “Numerical aspects of particle-in-cell simulations for plasma-motion modeling of electric thrusters”, Aerospace, 8:5 (2021), 138  crossref  isi  scopus
    7. A. Penenko, “Convergence analysis of the adjoint ensemble method in inverse source problems for advection-diffusion-reaction models with image-type measurements”, Inverse Probl. Imaging, 14:5 (2020), 757–782  crossref  mathscinet  zmath  isi  scopus
    8. A. V. Penenko, A. B. Salimova, “Source indentification for the Smoluchowski equation using an ensemble of the adjoint equation solutions”, Num. Anal. Appl., 13:2 (2020), 152–164  mathnet  crossref  crossref  isi
    9. Alexey Penenko, Ulyana Zubairova, Alexander Bobrovskikh, Alexey Doroshkov, 2020 Cognitive Sciences, Genomics and Bioinformatics (CSGB), 2020, 14  crossref
    10. Alexey Penenko, Alexander Gochakov, Vladimir Penenko, “Algorithms based on sensitivity operators for analyzing and solving inverse modeling problems of transport and transformation of atmospheric pollutants”, IOP Conf. Ser.: Earth Environ. Sci., 611:1 (2020), 012032  crossref
    11. Penenko A., Mukatova Zh., Salimova A., “Numerical Solution of the Coefficient Inverse Problem For a Production-Destruction Model With Various Adjoint Ensemble Designs”, 2019 15Th International Asian School-Seminar Optimization Problems of Complex Systems (Opcs 2019), IEEE, 2019, 135–139  isi
    12. A V Penenko, Zh S Mukatova, A B Salimova, “Numerical analysis of an inverse coefficient problem for a chemical transformation model”, IOP Conf. Ser.: Earth Environ. Sci., 386:1 (2019), 012041  crossref
    13. Alexey Penenko, Zhadyra Mukatova, Akzhan Salimova, 2019 15th International Asian School-Seminar Optimization Problems of Complex Systems (OPCS), 2019, 135  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:386
    Full-text PDF :196
    References:61
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025