Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2018, Volume 21, Number 4, Pages 435–449
DOI: https://doi.org/10.15372/SJNM20180407
(Mi sjvm695)
 

This article is cited in 2 scientific papers (total in 2 papers)

A new non-overlapping domain decomposition method for the 3-D Laplace exterior problem

V. M. Sveshnikovab, A. O. Savchenkoa, A. V. Petukhova

a Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent'eva 6, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia
Full-text PDF (619 kB) Citations (2)
References:
Abstract: We propose a method for solving the three-dimensional boundary value problems for the Laplace equation in an unbounded domain. It is based on the non-overlapping decomposition of the exterior domain to the two subdomains such that the initial problem is reduced to the two subproblems, namely, the exterior and the interior boundary value problems on a sphere. To solve the exterior boundary value problem, we propose a singularity isolation method. To cross-link the solutions at the interface of subdomains (a sphere), we introduce a special operator equation that is approximated by the system of linear algebraic equations. Such a system is solved by iterative methods in the Krylov subspaces. The method is illustrated by solving the model problems confirming its operability.
Key words: exterior boundary value problems, non-overlapping decomposition, computation of integrals with a singularities, iterative methods in Krylov subspaces.
Funding agency Grant number
Russian Science Foundation 14-11-00485
Russian Foundation for Basic Research 16-01-00168
This work was supported by the Russian Science Foundation (project no. 14-11-00485) and the Russian Foundation for Basic Research (project no. 16-01-00168).
Received: 15.06.2016
Revised: 11.05.2018
English version:
Numerical Analysis and Applications, 2018, Volume 11, Issue 4, Pages 346–358
DOI: https://doi.org/10.1134/S1995423918040079
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: V. M. Sveshnikov, A. O. Savchenko, A. V. Petukhov, “A new non-overlapping domain decomposition method for the 3-D Laplace exterior problem”, Sib. Zh. Vychisl. Mat., 21:4 (2018), 435–449; Num. Anal. Appl., 11:4 (2018), 346–358
Citation in format AMSBIB
\Bibitem{SveSavPet18}
\by V.~M.~Sveshnikov, A.~O.~Savchenko, A.~V.~Petukhov
\paper A new non-overlapping domain decomposition method for the 3-D Laplace exterior problem
\jour Sib. Zh. Vychisl. Mat.
\yr 2018
\vol 21
\issue 4
\pages 435--449
\mathnet{http://mi.mathnet.ru/sjvm695}
\crossref{https://doi.org/10.15372/SJNM20180407}
\elib{https://elibrary.ru/item.asp?id=36415629}
\transl
\jour Num. Anal. Appl.
\yr 2018
\vol 11
\issue 4
\pages 346--358
\crossref{https://doi.org/10.1134/S1995423918040079}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453052200007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058296584}
Linking options:
  • https://www.mathnet.ru/eng/sjvm695
  • https://www.mathnet.ru/eng/sjvm/v21/i4/p435
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:261
    Full-text PDF :38
    References:53
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024