Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2018, Volume 21, Number 4, Pages 349–365
DOI: https://doi.org/10.15372/SJNM20180401
(Mi sjvm689)
 

This article is cited in 2 scientific papers (total in 2 papers)

Estimation by Monte Carlo method of functional characteristics of the radiation intensity field passing throw a random medium

A. Yu. Ambosa, G. A. Mikhailovab

a Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent'eva 6, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia
References:
Abstract: Numerical-statistical estimates of correlation characteristics and averaged angle near distributions of the radiation intensity field, passing throw a random medium are obtained. Comparative investigations were performed for an elementary Poisson field and for the “realistic” field of the medium optical density. The obtained estimates confirm the hypothesis about a strong dependence of investigated values on the correlation scale and the one-dimensional distribution of the medium density field.
Key words: Monte Carlo method, Poisson ensemble, random medium, correlation function, correlation radius, radiative transfer, transmission function, transmission probability, delta scattering, double randomization method.
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations 0315-2016-0002
Russian Foundation for Basic Research 16-01-00530
17-01-00823
18-01-00356
This work was performed under Institute of Computational Mathematics and Mathematical Geophysics SB RAS State Order (project no. 0315-2016-0002). Work of Sections 4–6 was supported by the RFBR (projects nos. 16-01-00530, 17-01-00823, and 18-01-00356).
Received: 02.04.2018
Revised: 25.04.2018
English version:
Numerical Analysis and Applications, 2018, Volume 11, Issue 4, Pages 279–292
DOI: https://doi.org/10.1134/S1995423918040018
Bibliographic databases:
Document Type: Article
UDC: 519.245
Language: Russian
Citation: A. Yu. Ambos, G. A. Mikhailov, “Estimation by Monte Carlo method of functional characteristics of the radiation intensity field passing throw a random medium”, Sib. Zh. Vychisl. Mat., 21:4 (2018), 349–365; Num. Anal. Appl., 11:4 (2018), 279–292
Citation in format AMSBIB
\Bibitem{AmbMik18}
\by A.~Yu.~Ambos, G.~A.~Mikhailov
\paper Estimation by Monte Carlo method of functional characteristics of the radiation intensity field passing throw a~random medium
\jour Sib. Zh. Vychisl. Mat.
\yr 2018
\vol 21
\issue 4
\pages 349--365
\mathnet{http://mi.mathnet.ru/sjvm689}
\crossref{https://doi.org/10.15372/SJNM20180401}
\elib{https://elibrary.ru/item.asp?id=36415623}
\transl
\jour Num. Anal. Appl.
\yr 2018
\vol 11
\issue 4
\pages 279--292
\crossref{https://doi.org/10.1134/S1995423918040018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453052200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058295785}
Linking options:
  • https://www.mathnet.ru/eng/sjvm689
  • https://www.mathnet.ru/eng/sjvm/v21/i4/p349
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:174
    Full-text PDF :204
    References:27
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024