Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2018, Volume 21, Number 2, Pages 171–183
DOI: https://doi.org/10.15372/SJNM20180204
(Mi sjvm676)
 

This article is cited in 6 scientific papers (total in 6 papers)

Analytical approach to solution fractional partial differential equation by optimal q-homotopy analysis method

R. Darzia, B. Aghelib

a Department of Mathematics, Neka Branch, Islamic Azad University, Neka, Iran
b Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
References:
Abstract: The optimal q-homotopy analysis method is employed in order to solve partial differential equations (PDEs) featuring a time-fractional derivative. Then, in order to illustrate the simplicity and ability of the suggested approach, some specific and clear examples are given. All numerical calculations in this manuscript have been carried out with Mathematica package.
Key words: nonlinear fractional partial differential equation, optimal q-homotopy analysis method, Caputo derivative.
Received: 29.09.2016
Revised: 01.08.2017
English version:
Numerical Analysis and Applications, 2018, Volume 11, Issue 2, Pages 134–145
DOI: https://doi.org/10.1134/S1995423918020040
Bibliographic databases:
Document Type: Article
MSC: 14F35, 26A33, 35R11
Language: Russian
Citation: R. Darzi, B. Agheli, “Analytical approach to solution fractional partial differential equation by optimal q-homotopy analysis method”, Sib. Zh. Vychisl. Mat., 21:2 (2018), 171–183; Num. Anal. Appl., 11:2 (2018), 134–145
Citation in format AMSBIB
\Bibitem{DarAgh18}
\by R.~Darzi, B.~Agheli
\paper Analytical approach to solution fractional partial differential equation by optimal q-homotopy analysis method
\jour Sib. Zh. Vychisl. Mat.
\yr 2018
\vol 21
\issue 2
\pages 171--183
\mathnet{http://mi.mathnet.ru/sjvm676}
\crossref{https://doi.org/10.15372/SJNM20180204}
\elib{https://elibrary.ru/item.asp?id=34944630}
\transl
\jour Num. Anal. Appl.
\yr 2018
\vol 11
\issue 2
\pages 134--145
\crossref{https://doi.org/10.1134/S1995423918020040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000434641800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85048133420}
Linking options:
  • https://www.mathnet.ru/eng/sjvm676
  • https://www.mathnet.ru/eng/sjvm/v21/i2/p171
  • This publication is cited in the following 6 articles:
    1. Süleyman Şengül, Zafer Bekiryazici, Mehmet Merdan, “Approximate Solutions of Fractional Differential Equations Using Optimal q-Homotopy Analysis Method: A Case Study of Abel Differential Equations”, Fractal Fract, 8:9 (2024), 533  crossref
    2. Eltaib M Abd Elmohmoud, Mohamed Z. Mohamed, “Numerical treatment of some fractional nonlinear equations by Elzaki transform”, Journal of Taibah University for Science, 16:1 (2022), 774  crossref
    3. Andrew Omame, Mujahid Abbas, Chibueze P. Onyenegecha, “A fractional order model for the co-interaction of COVID-19 and Hepatitis B virus”, Results in Physics, 37 (2022), 105498  crossref
    4. Z. Liu, Q. Wang, “A non-standard finite difference method for space fractional advection-diffusion equation”, Numer. Meth. Part Differ. Equ., 37:3 (2021), 2527–2539  crossref  mathscinet  isi  scopus
    5. A. El-Ajou, M. Al-Smadi, N. Oqielat Moa'ath, Sh. Momani, S. Hadid, “Smooth expansion to solve high-order linear conformable fractional pdes via residual power series method: applications to physical and engineering equations”, Ain Shams Eng. J., 11:4 (2020), 1243–1254  crossref  isi  scopus
    6. H. Khan, R. Shah, P. Kumam, D. Baleanu, M. Arif, “Laplace decomposition for solving nonlinear system of fractional order partial differential equations”, Adv. Differ. Equ., 2020:1 (2020), 375  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:288
    Full-text PDF :103
    References:36
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025