Abstract:
The inverse problem of recovering the leading time-dependent coefficient by the known non-local additional information is investigated. For an approximate solution of the nonlinear inverse problems we propose the gradient method of minimizing the target functional. The comparative analysis with the method based on the linearized approximation scheme with respect to time is made. The results of the numerical calculations are presented.
Citation:
S. I. Kabanikhin, M. A. Shishlenin, “Recovery of the time-dependent diffusion coefficient by known non-local data”, Sib. Zh. Vychisl. Mat., 21:1 (2018), 55–63; Num. Anal. Appl., 11:1 (2018), 38–44
\Bibitem{KabShi18}
\by S.~I.~Kabanikhin, M.~A.~Shishlenin
\paper Recovery of the time-dependent diffusion coefficient by known non-local data
\jour Sib. Zh. Vychisl. Mat.
\yr 2018
\vol 21
\issue 1
\pages 55--63
\mathnet{http://mi.mathnet.ru/sjvm668}
\crossref{https://doi.org/10.15372/SJNM20180104}
\elib{https://elibrary.ru/item.asp?id=32466479}
\transl
\jour Num. Anal. Appl.
\yr 2018
\vol 11
\issue 1
\pages 38--44
\crossref{https://doi.org/10.1134/S1995423918010056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427431900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043690732}
Linking options:
https://www.mathnet.ru/eng/sjvm668
https://www.mathnet.ru/eng/sjvm/v21/i1/p55
This publication is cited in the following 25 articles:
Y. R. Ashrafova, “An Inverse Parametric Problem for a Large System of Differential Equations with Nonlocal Boundary Conditions”, Numer. Analys. Appl., 18:1 (2025), 1
Ali Ugur Sazaklioglu, “An iterative numerical method for an inverse source problem for a multidimensional nonlinear parabolic equation”, Applied Numerical Mathematics, 198 (2024), 428
D. V. Lukyanenko, R. L. Argun, A. A. Borzunov, A. V. Gorbachev, V. D. Shinkarev, M. A. Shishlenin, A. G. Yagola, “On the Features of Numerical Solution of Coefficient Inverse Problems for Nonlinear Equations of the Reaction–Diffusion–Advection Type with Data of Various Types”, Diff Equat, 59:12 (2023), 1734
S. Z. Dzhamalov, B. K. Sipatdinova, “Semi-Nonlocal Boundary Problem for a Three-Dimensional Second Kind Mixed Equation in a Unbounded Parallelepiped”, Lobachevskii J Math, 44:3 (2023), 1145
R. L. Argun, A. V. Gorbachev, D. V. Lukyanenko, M. A. Shishlenin, “Features of numerical reconstruction of a boundary condition in an inverse problem for a reaction–diffusion–advection equation with data on the position of a reaction front”, Comput. Math. Math. Phys., 62:3 (2022), 441–451
R.L. Argun, V.T. Volkov, D.V. Lukyanenko, “Numerical simulation of front dynamics in a nonlinear singularly perturbed reaction–diffusion problem”, Journal of Computational and Applied Mathematics, 412 (2022), 114294
T. K. Yuldashev, O. Sh. Kilichev, “Nonlinear Inverse Problem for a Sixth Order Differential Equation with Two Redefinition Functions”, Lobachevskii J Math, 43:3 (2022), 804
K. R. Aida-zade, Y. R. Ashrafova, “Control of effects in the right-hand sides of a large ODE system of a block structure and optimization of sources in unseparated boundary conditions”, Num. Anal. Appl., 14:3 (2021), 201–219
T. K. Yuldashev, “Obratnaya smeshannaya zadacha dlya integro-differentsialnogo uravneniya s mnogomernym operatorom Benni—Lyuka i nelineinymi maksimumami”, Differentsialnye uravneniya, geometriya i topologiya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 201, VINITI RAN, M., 2021, 3–15
R. Argun, A. Gorbachev, D. Lukyanenko, M. Shishlenin, “On some features of the numerical solving of coefficient inverse problems for an equation of the reaction-diffusion-advection-type with data on the position of a reaction front”, Mathematics, 9:22 (2021), 2894
R. Argun, A. Gorbachev, N. Levashova, D. Lukyanenko, “Inverse problem for an equation of the reaction-diffusion-advection type with data on the position of a reaction front: features of the solution in the case of a nonlinear integral equation in a reduced statement”, Mathematics, 9:18 (2021), 2342
D. V. Klyuchinskiy, N. S. Novikov, M. A. Shishlenin, “CPU-time and RAM memory optimization for solving dynamic inverse problems using gradient-based approach”, J. Comput. Phys., 439 (2021), 110374
N. Levashova, A. Gorbachev, R. Argun, D. Lukyanenko, “The problem of the non-uniqueness of the solution to the inverse problem of recovering the symmetric states of a bistable medium with data on the position of an autowave front”, Symmetry-Basel, 13:5 (2021), 860
D. V. Lukyanenko, A. A. Borzunov, M. A. Shishlenin, “Solving coefficient inverse problems for nonlinear singularly perturbed equations of the reaction-diffusion-advection type with data on the position of a reaction front”, Commun. Nonlinear Sci. Numer. Simul., 99 (2021), 105824
D. Lukyanenko, T. Yeleskina, I. Prigorniy, T. Isaev, A. Borzunov, M. Shishlenin, “Inverse problem of recovering the initial condition for a nonlinear equation of the reaction-diffusion-advection type by data given on the position of a reaction front with a time delay”, Mathematics, 9:4 (2021), 342
T. K. Yuldashev, F. D. Rakhmonov, “On a Benney–Luke Type Differential Equation with Nonlinear Boundary Value Conditions”, Lobachevskii J Math, 42:15 (2021), 3761
D. V. Lukyanenko, I. V. Prigorniy, M. A. Shishlenin, “Some features of solving an inverse backward problem for a generalized Burgers' equation”, J. Inverse Ill-Posed Probl., 28:5 (2020), 641–649
D. V. Lukyanenko, M. A. Shishlenin, V. T. Volkov, “Asymptotic analysis of solving an inverse boundary value problem for a nonlinear singularly perturbed time-periodic reaction-diffusion-advection equation”, J. Inverse Ill-Posed Probl., 27:5 (2019), 745–758
E. Tabarintseva, “Approximate solving of an inverse problem for a parabolic equation with nonlocal data”, 2019 15Th International Asian School-Seminar Optimization Problems of Complex Systems (OPCS 2019), IEEE, 2019, 173–178