Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2018, Volume 21, Number 1, Pages 55–63
DOI: https://doi.org/10.15372/SJNM20180104
(Mi sjvm668)
 

This article is cited in 24 scientific papers (total in 24 papers)

Recovery of the time-dependent diffusion coefficient by known non-local data

S. I. Kabanikhinabc, M. A. Shishleninabc

a Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 6 Lavrentiev av., Novosibirsk, 630090, Russia
b Sobolev Institute of Mathematics SB RAS, 4 Acad. Koptyug av., Novosibirsk, 630090, Russia
c Novosibirsk State University, 2 Pirogova str., Novosibirsk, 630090, Russia
References:
Abstract: The inverse problem of recovering the leading time-dependent coefficient by the known non-local additional information is investigated. For an approximate solution of the nonlinear inverse problems we propose the gradient method of minimizing the target functional. The comparative analysis with the method based on the linearized approximation scheme with respect to time is made. The results of the numerical calculations are presented.
Key words: parabolic equation, time-dependent coefficient inverse problem, numerical methods, nonlocal condition.
Funding agency Grant number
Russian Foundation for Basic Research 17-51-540004
16-29-15120
16-01-00755
Received: 16.06.2017
Revised: 07.07.2017
English version:
Numerical Analysis and Applications, 2018, Volume 11, Issue 1, Pages 38–44
DOI: https://doi.org/10.1134/S1995423918010056
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: S. I. Kabanikhin, M. A. Shishlenin, “Recovery of the time-dependent diffusion coefficient by known non-local data”, Sib. Zh. Vychisl. Mat., 21:1 (2018), 55–63; Num. Anal. Appl., 11:1 (2018), 38–44
Citation in format AMSBIB
\Bibitem{KabShi18}
\by S.~I.~Kabanikhin, M.~A.~Shishlenin
\paper Recovery of the time-dependent diffusion coefficient by known non-local data
\jour Sib. Zh. Vychisl. Mat.
\yr 2018
\vol 21
\issue 1
\pages 55--63
\mathnet{http://mi.mathnet.ru/sjvm668}
\crossref{https://doi.org/10.15372/SJNM20180104}
\elib{https://elibrary.ru/item.asp?id=32466479}
\transl
\jour Num. Anal. Appl.
\yr 2018
\vol 11
\issue 1
\pages 38--44
\crossref{https://doi.org/10.1134/S1995423918010056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427431900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043690732}
Linking options:
  • https://www.mathnet.ru/eng/sjvm668
  • https://www.mathnet.ru/eng/sjvm/v21/i1/p55
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025