Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2017, Volume 20, Number 3, Pages 329–344
DOI: https://doi.org/10.15372/SJNM20170308
(Mi sjvm655)
 

This article is cited in 4 scientific papers (total in 4 papers)

A multi-point numerical integrator with trigonometric coefficients for initial value problems with periodic solutions

J. O. Ehigieab, S. N. Jatorc, S. A. Okunugab

a College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
b Department of Mathematics, University of Lagos, Lagos 23401, Nigeria
c Department of Mathematics and Statistics, Austin Peay State University, Clarksville, TN, USA
Full-text PDF (797 kB) Citations (4)
References:
Abstract: Based on a collocation technique, we introduce a unifying approach for deriving a family of multi-point numerical integrators with trigonometric coefficients for the numerical solution of periodic initial value problems. A practical $3$-point numerical integrator is presented, whose coefficients are generalizations of classical linear multistep methods such that the coefficients are functions of an estimate of the angular frequency $\omega$. The collocation technique yields a continuous method, from which the main and complementary methods are recovered and expressed as a block matrix finite difference formula which integrates a second order differential equation over non-overlapping intervals without predictors. Some properties of the numerical integrator are investigated and presented. Numerical examples are given to illustrate the accuracy of the method.
Key words: block method, periodic solution, trigonometric coefficients, collocation technique.
Received: 23.05.2016
Revised: 06.02.2017
English version:
Numerical Analysis and Applications, 2017, Volume 10, Issue 3, Pages 272–286
DOI: https://doi.org/10.1134/S1995423917030089
Bibliographic databases:
Document Type: Article
MSC: 65L04, 65L05, 65L06
Language: Russian
Citation: J. O. Ehigie, S. N. Jator, S. A. Okunuga, “A multi-point numerical integrator with trigonometric coefficients for initial value problems with periodic solutions”, Sib. Zh. Vychisl. Mat., 20:3 (2017), 329–344; Num. Anal. Appl., 10:3 (2017), 272–286
Citation in format AMSBIB
\Bibitem{EhiJatOku17}
\by J.~O.~Ehigie, S.~N.~Jator, S.~A.~Okunuga
\paper A multi-point numerical integrator with trigonometric coefficients for initial value problems with periodic solutions
\jour Sib. Zh. Vychisl. Mat.
\yr 2017
\vol 20
\issue 3
\pages 329--344
\mathnet{http://mi.mathnet.ru/sjvm655}
\crossref{https://doi.org/10.15372/SJNM20170308}
\elib{https://elibrary.ru/item.asp?id=29847826}
\transl
\jour Num. Anal. Appl.
\yr 2017
\vol 10
\issue 3
\pages 272--286
\crossref{https://doi.org/10.1134/S1995423917030089}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000414291500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029149604}
Linking options:
  • https://www.mathnet.ru/eng/sjvm655
  • https://www.mathnet.ru/eng/sjvm/v20/i3/p329
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:168
    Full-text PDF :40
    References:45
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025