Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2017, Volume 20, Number 3, Pages 273–287
DOI: https://doi.org/10.15372/SJNM20170304
(Mi sjvm651)
 

This article is cited in 1 scientific paper (total in 1 paper)

A priori error estimates of finite volume method for nonlinear optimal control problem

Z. Luab, L. Lia, L. Caoa, Ch. Houc

a Key Laboratory for Nonlinear Science and System Structure, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
b Research Center for Mathematics and Economics, Tianjin University of Finance and Economics, Tianjin, 300222, P.R. China
c Huashang College Guangdong University of Finance, Guangzhou, 511300, P.R. China
Full-text PDF (670 kB) Citations (1)
References:
Abstract: In this paper, we study a priori error estimates for a finite volume element approximation of a nonlinear optimal control problem. The schemes use discretizations base on a finite volume method. For the variational inequality, we use a method of the variational discretization concept to obtain the control. Under some reasonable assumptions, we obtain some optimal order error estimates. The approximate order for the state, costate, and control variables is $O(h^2)$ or $O(h^2\sqrt{|\ln h|})$ in the sense of $L^2$-norm or $L^\infty$-norm. A numerical experiment is presented to test the theoretical results. Finally, we give some conclusions and future works.
Key words: a priori error estimates, nonlinear optimal control problem, finite volume method, variational discretization.
Funding agency Grant number
National Natural Science Foundation of China 11201510
11171251
Innovation Team Building at Institutions of Higher Education in Chongqing CXTDX201601035
China Postdoctoral Science Foundation 2015M580197
Chongqing Research Program of Basic Research and Frontier Technology cstc2015jcyjA20001
Ministry of education Chunhui Z2015139
Science and Technology Project of Wanzhou District of Chongqing
Received: 08.12.2016
Revised: 04.03.2017
English version:
Numerical Analysis and Applications, 2017, Volume 10, Issue 3, Pages 224–236
DOI: https://doi.org/10.1134/S1995423917030041
Bibliographic databases:
Document Type: Article
MSC: 49J20, 65N30
Language: Russian
Citation: Z. Lu, L. Li, L. Cao, Ch. Hou, “A priori error estimates of finite volume method for nonlinear optimal control problem”, Sib. Zh. Vychisl. Mat., 20:3 (2017), 273–287; Num. Anal. Appl., 10:3 (2017), 224–236
Citation in format AMSBIB
\Bibitem{ZulLiCao17}
\by Z.~Lu, L.~Li, L.~Cao, Ch.~Hou
\paper A priori error estimates of finite volume method for nonlinear optimal control problem
\jour Sib. Zh. Vychisl. Mat.
\yr 2017
\vol 20
\issue 3
\pages 273--287
\mathnet{http://mi.mathnet.ru/sjvm651}
\crossref{https://doi.org/10.15372/SJNM20170304}
\elib{https://elibrary.ru/item.asp?id=29847822}
\transl
\jour Num. Anal. Appl.
\yr 2017
\vol 10
\issue 3
\pages 224--236
\crossref{https://doi.org/10.1134/S1995423917030041}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000414291500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029146958}
Linking options:
  • https://www.mathnet.ru/eng/sjvm651
  • https://www.mathnet.ru/eng/sjvm/v20/i3/p273
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:180
    Full-text PDF :42
    References:42
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024