Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2016, Volume 19, Number 4, Pages 419–428
DOI: https://doi.org/10.15372/SJNM20160406
(Mi sjvm627)
 

This article is cited in 6 scientific papers (total in 6 papers)

Quadrature interpolation type formulas for hypersingular integrals in the interval of integration

L. Yu. Plievaab

a Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences, 53 Vatutin str., Vladikavkaz, 362025, Russia
b K. L. Khetagurov North Ossetian State University, 44 Vatutin str., Vladikavkaz, 362025, Russia
Full-text PDF (376 kB) Citations (6)
References:
Abstract: A hypersingular integral on the interval of integration with the weight function is considered. We prove the spectral ratios for hypersingular integrals on $[-1,1]$. The quadrature formulas for certain integrals with the weight function are constructed. The estimation error is presented.
Key words: hypersingular integral, quadrature formula, the estimation error.
Received: 22.06.2015
Revised: 16.12.2015
English version:
Numerical Analysis and Applications, 2016, Volume 9, Issue 4, Pages 326–334
DOI: https://doi.org/10.1134/S1995423916040066
Bibliographic databases:
Document Type: Article
UDC: 519.64
Language: Russian
Citation: L. Yu. Plieva, “Quadrature interpolation type formulas for hypersingular integrals in the interval of integration”, Sib. Zh. Vychisl. Mat., 19:4 (2016), 419–428; Num. Anal. Appl., 9:4 (2016), 326–334
Citation in format AMSBIB
\Bibitem{Pli16}
\by L.~Yu.~Plieva
\paper Quadrature interpolation type formulas for hypersingular integrals in the interval of integration
\jour Sib. Zh. Vychisl. Mat.
\yr 2016
\vol 19
\issue 4
\pages 419--428
\mathnet{http://mi.mathnet.ru/sjvm627}
\crossref{https://doi.org/10.15372/SJNM20160406}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3600778}
\elib{https://elibrary.ru/item.asp?id=27298008}
\transl
\jour Num. Anal. Appl.
\yr 2016
\vol 9
\issue 4
\pages 326--334
\crossref{https://doi.org/10.1134/S1995423916040066}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391192300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85002944002}
Linking options:
  • https://www.mathnet.ru/eng/sjvm627
  • https://www.mathnet.ru/eng/sjvm/v19/i4/p419
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024