Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2016, Volume 19, Number 4, Pages 371–383
DOI: https://doi.org/10.15372/SJNM20160403
(Mi sjvm624)
 

This article is cited in 2 scientific papers (total in 2 papers)

Regularizing algorithms with optimal and extra-optimal quality

A. S. Leonov

National Engineering Physics Institute "MEPhI", 31 Kashirskoe shosse, Moscow, 115409, Russia
Full-text PDF (551 kB) Citations (2)
References:
Abstract: The notion of a special quality for approximate solutions to ill-posed inverse problems is introduced. A posteriori estimates of the quality are studied for different regularizing algorithms (RA). Examples of typical quality functionals are provided, which arise in solving linear and nonlinear inverse problems. The techniques and the numerical algorithm for calculating a posteriori quality estimates for approximate solutions of general nonlinear inverse problems are developed. The new notions of optimal and extra-optimal quality of a regularizing algorithm are introduced. The theory of regularizing algorithms with optimal and extraoptimal quality is presented, which includes an investigation of optimal properties for estimation functions of the quality. Examples of regularizing algorithms with extra-optimal quality of solutions are given, as well as examples of regularizing algorithms without such property. The results of numerical experiments illustrate a posteriori quality estimation.
Key words: ill-posed problems, regularizing algorithms, quality of approximate solution, a posteriori quality estimates, RA with extra-optimal quality.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00182-a
14-01-91151-ГФЕН-а
Received: 24.11.2015
Revised: 02.02.2016
English version:
Numerical Analysis and Applications, 2016, Volume 9, Issue 4, Pages 288–298
DOI: https://doi.org/10.1134/S1995423916040030
Bibliographic databases:
Document Type: Article
UDC: 517.988.68
Language: Russian
Citation: A. S. Leonov, “Regularizing algorithms with optimal and extra-optimal quality”, Sib. Zh. Vychisl. Mat., 19:4 (2016), 371–383; Num. Anal. Appl., 9:4 (2016), 288–298
Citation in format AMSBIB
\Bibitem{Leo16}
\by A.~S.~Leonov
\paper Regularizing algorithms with optimal and extra-optimal quality
\jour Sib. Zh. Vychisl. Mat.
\yr 2016
\vol 19
\issue 4
\pages 371--383
\mathnet{http://mi.mathnet.ru/sjvm624}
\crossref{https://doi.org/10.15372/SJNM20160403}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3600775}
\elib{https://elibrary.ru/item.asp?id=27298004}
\transl
\jour Num. Anal. Appl.
\yr 2016
\vol 9
\issue 4
\pages 288--298
\crossref{https://doi.org/10.1134/S1995423916040030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391192300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85002756070}
Linking options:
  • https://www.mathnet.ru/eng/sjvm624
  • https://www.mathnet.ru/eng/sjvm/v19/i4/p371
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:258
    Full-text PDF :47
    References:45
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024