Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2016, Volume 19, Number 3, Pages 281–295
DOI: https://doi.org/10.15372/SJNM20160304
(Mi sjvm618)
 

This article is cited in 14 scientific papers (total in 14 papers)

Mathematical study of two-variable systems with adaptive numerical methods

Kolade M. Owolabiab

a Department of Mathematics and Applied Mathematics, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
b Department of Mathematical Sciences, Federal University of Technology, Akure PMB 704, Akure, Ondo State, Nigeria
References:
Abstract: In this paper, we consider reaction-diffusion systems arising from two-component predator-prey models with Smith growth functional response. The mathematical approach used here is twofold, since the time-dependent partial differential equations consist of both linear and nonlinear terms. We discretize the stiff or moderately stiff term with a fourth-order difference operator, advance the resulting nonlinear system of ordinary differential equations with a family of two competing exponential time differencing (ETD) schemes, and analyze them for stability. A numerical comparison of these two methods for solving various predator-prey population models with functional responses is also presented. Numerical results show that the techniques require less computational work. Also in the numerical results, some emerging spatial patterns are unveiled.
Key words: predator-prey model, ETD methods, nonlinear, pattern formation, reaction-diffusion, stability, time-dependent PDE, Turing instability.
Received: 08.09.2015
Revised: 02.11.2015
English version:
Numerical Analysis and Applications, 2016, Volume 9, Issue 3, Pages 218–230
DOI: https://doi.org/10.1134/S1995423916030046
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Kolade M. Owolabi, “Mathematical study of two-variable systems with adaptive numerical methods”, Sib. Zh. Vychisl. Mat., 19:3 (2016), 281–295; Num. Anal. Appl., 9:3 (2016), 218–230
Citation in format AMSBIB
\Bibitem{Owo16}
\by Kolade~M.~Owolabi
\paper Mathematical study of two-variable systems with adaptive numerical methods
\jour Sib. Zh. Vychisl. Mat.
\yr 2016
\vol 19
\issue 3
\pages 281--295
\mathnet{http://mi.mathnet.ru/sjvm618}
\crossref{https://doi.org/10.15372/SJNM20160304}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3600769}
\elib{https://elibrary.ru/item.asp?id=26477416}
\transl
\jour Num. Anal. Appl.
\yr 2016
\vol 9
\issue 3
\pages 218--230
\crossref{https://doi.org/10.1134/S1995423916030046}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391191900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84984914581}
Linking options:
  • https://www.mathnet.ru/eng/sjvm618
  • https://www.mathnet.ru/eng/sjvm/v19/i3/p281
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:242
    Full-text PDF :119
    References:32
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024