Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2016, Volume 19, Number 2, Pages 207–222
DOI: https://doi.org/10.15372/SJNM20160207
(Mi sjvm613)
 

This article is cited in 4 scientific papers (total in 4 papers)

Asymptotics of eigenvalues of the nonlinear eigenvalue problem arising from the near mixed-mode crack-tip stress-strain field problems

L. V. Stepanova, E. M. Yakovleva

Department of Mathematical Modelling in Mechanics, Samara State University, 1 Akad. Pavlov str., Samara, 443011, Russia
References:
Abstract: In the present paper, approximate analytical and numerical solutions to nonlinear eigenvalue problems arising in the nonlinear fracture mechanics in analysis of stress-strain fields near a crack tip under a mixed mode loading are presented. Asymptotic solutions are obtained by the perturbation method (the small artificial parameter method). The artificial small parameter is a difference between the eigenvalue corresponding to the nonlinear eigenvalue problem and the eigenvalue related to the linear “undisturbed” problem. It is shown that the perturbation technique gives an effective method of solving nonlinear eigenvalue problems in the nonlinear fracture mechanics. Comparison of numerical and asymptotic results for different values of the mixity parameter and hardening exponent shows good agreement. Thus, the perturbation theory technique for studying nonlinear eigenvalue problems is offered and applied to eigenvalue problems arising from the fracture mechanics analysis in the case of a mixed mode loading.
Key words: nonlinear eigenvalue problem, perturbation theory small parameter method, asymptotics of stress and strain fields in the vicinity of the mixed-mode crack, mixed-mode loading, power constitutive law, eigenspectrum.
Received: 03.08.2015
English version:
Numerical Analysis and Applications, 2016, Volume 9, Issue 2, Pages 159–170
DOI: https://doi.org/10.1134/S1995423916020075
Bibliographic databases:
Document Type: Article
UDC: 539.4
Language: Russian
Citation: L. V. Stepanova, E. M. Yakovleva, “Asymptotics of eigenvalues of the nonlinear eigenvalue problem arising from the near mixed-mode crack-tip stress-strain field problems”, Sib. Zh. Vychisl. Mat., 19:2 (2016), 207–222; Num. Anal. Appl., 9:2 (2016), 159–170
Citation in format AMSBIB
\Bibitem{SteYak16}
\by L.~V.~Stepanova, E.~M.~Yakovleva
\paper Asymptotics of eigenvalues of the nonlinear eigenvalue problem arising from the near mixed-mode crack-tip stress-strain field problems
\jour Sib. Zh. Vychisl. Mat.
\yr 2016
\vol 19
\issue 2
\pages 207--222
\mathnet{http://mi.mathnet.ru/sjvm613}
\crossref{https://doi.org/10.15372/SJNM20160207}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3509203}
\elib{https://elibrary.ru/item.asp?id=25984443}
\transl
\jour Num. Anal. Appl.
\yr 2016
\vol 9
\issue 2
\pages 159--170
\crossref{https://doi.org/10.1134/S1995423916020075}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000377110400007}
\elib{https://elibrary.ru/item.asp?id=27140312}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84975886972}
Linking options:
  • https://www.mathnet.ru/eng/sjvm613
  • https://www.mathnet.ru/eng/sjvm/v19/i2/p207
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:230
    Full-text PDF :47
    References:37
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024