Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2016, Volume 19, Number 2, Pages 139–152
DOI: https://doi.org/10.15372/SJNM20160202
(Mi sjvm608)
 

This article is cited in 2 scientific papers (total in 2 papers)

The peculiarities of error accumulation in solving problems for simple equations of mathematical physics by finite difference methods

V. P. Zhitnikova, N. M. Sherykhalinaa, R. R. Muksimovab

a Ufa State Aviation Technical University, 12 K. Marksa str., Ufa, 450000, Russia
b Saint-Petersburg State University of Civil Aviation, 38 Pilotov str., St. Petersburg, 196210, Russia
Full-text PDF (657 kB) Citations (2)
References:
Abstract: A mixed problem for a one-dimensional heat equation with several versions of initial and boundary conditions is considered. Explicit and implicit schemes are applied for the solution. The sweep method and the iteration methods are used for the implicit scheme for solving the implicit system of equations. The numerical filtration of a finite sequence of results obtained for different grids with an increasing number of nodal points is used to analyze errors of the method and rounding. In addition, to investigate the rounding errors, the results obtained with several lengths of the machine word mantissa are compared. The numerical solution of the mixed problem for the wave equation is studied by similar methods.
The occurrence of deterministic dependencies of the error in the numerical method and the rounding on spatial coordinates, time and the number of nodes is revealed. The source models to describe the behavior of errors in terms of time are based on the analysis of the results of numerical experiments for different versions of conditions of problems. In accord with such models, which were verified by the experiment, the errors can increase, decrease or stabilize depending on conditions over time similar to changing the energy or mass.
Key words: heat equation, explicit and implicit schemes, the Courant number, model error, numerical filtration.
Received: 01.07.2015
Revised: 18.08.2015
English version:
Numerical Analysis and Applications, 2016, Volume 9, Issue 2, Pages 107–117
DOI: https://doi.org/10.1134/S1995423916020026
Bibliographic databases:
Document Type: Article
UDC: 519.632.4
Language: Russian
Citation: V. P. Zhitnikov, N. M. Sherykhalina, R. R. Muksimova, “The peculiarities of error accumulation in solving problems for simple equations of mathematical physics by finite difference methods”, Sib. Zh. Vychisl. Mat., 19:2 (2016), 139–152; Num. Anal. Appl., 9:2 (2016), 107–117
Citation in format AMSBIB
\Bibitem{ZhiSheMuk16}
\by V.~P.~Zhitnikov, N.~M.~Sherykhalina, R.~R.~Muksimova
\paper The peculiarities of error accumulation in solving problems for simple equations of mathematical physics by finite difference methods
\jour Sib. Zh. Vychisl. Mat.
\yr 2016
\vol 19
\issue 2
\pages 139--152
\mathnet{http://mi.mathnet.ru/sjvm608}
\crossref{https://doi.org/10.15372/SJNM20160202}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3509198}
\elib{https://elibrary.ru/item.asp?id=25984438}
\transl
\jour Num. Anal. Appl.
\yr 2016
\vol 9
\issue 2
\pages 107--117
\crossref{https://doi.org/10.1134/S1995423916020026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000377110400002}
\elib{https://elibrary.ru/item.asp?id=27140173}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84975856220}
Linking options:
  • https://www.mathnet.ru/eng/sjvm608
  • https://www.mathnet.ru/eng/sjvm/v19/i2/p139
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025