Abstract:
A model of double porosity in the case of an anisotropic fractured porous medium is considered (Dmitriev, Maksimov; 2007). The function of the exchange flow between fractures and porous blocks, which depends on the direction of a flow, is investigated. The flow function is based on the difference between pressure gradients. This feature enables one to take into account anisotropic filtering properties in a more general form. The results of the numerical solution of the model two-dimensional problem are presented. The computational algorithm is based on the finite element spatial approximation and the explicit-implicit temporal approximation.
Citation:
P. N. Vabishchevich, A. V. Grigoriev, “Numerical modeling of a fluid flow in anisotropic fractured porous media”, Sib. Zh. Vychisl. Mat., 19:1 (2016), 61–74; Num. Anal. Appl., 9:1 (2016), 45–56
This publication is cited in the following 9 articles:
Andrea Marinoni, Marine Mercier, Qian Shi, Sivasakthy Selvakumaran, Mark Girolami, ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, 1
V. A. Trofimov, “The influence of formation water on mass transfer in tine coal seam”, Nexo Rev. Cient., 34:1 (2021), 390–403
E. S. Batyrshin, O. A. Solnyshkina, Yu. A. Pityuk, “Study of the features of double porosity media impregnation”, Tech. Phys., 66:4 (2021), 543–547
A. Grigorev, S. Stepanov, Dj. Nikiforov, “Neural networks for multicontinuum models”, J. Phys.: Conf. Ser., 1392:1 (2019), 012068
V. I. Vasilev, M. V. Vasileva, A. V. Grigorev, G. A. Prokopev, “Matematicheskoe modelirovanie zadachi dvukhfaznoi filtratsii v neodnorodnykh treschinovato-poristykh sredakh s ispolzovaniem modeli dvoinoi poristosti i metoda konechnykh elementov”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 160, no. 1, Izd-vo Kazanskogo un-ta, Kazan, 2018, 165–182
Yu. M. Laevsky, A. V. Grigor'ev, P. G. Yakovlev, “On a double porosity model of fractured-porous reservoirs based on a hybrid flow function”, Numer. Anal. Appl., 11:2 (2018), 121–133
M. V. Vasileva, V. I. Vasilev, A. A. Krasnikov, D. Ya. Nikiforov, “Chislennoe modelirovanie techeniya odnofaznoi zhidkosti v treschinovatykh poristykh sredakh”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 159, no. 1, Izd-vo Kazanskogo un-ta, Kazan, 2017, 100–115
E. A. Mikishanina, A. G. Terentev, “Ob opredelenii napryazhennogo sostoyaniya uprugo-poristoi sredy”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 159, no. 2, Izd-vo Kazanskogo un-ta, Kazan, 2017, 204–215
V. N. Alekseev, M. V. Vasileva, G. A. Prokopev, A. A. Tyrylgin, “Modeli termouprugosti dlya poristykh materialov s uchetom nalichiya treschin”, Matematicheskie zametki SVFU, 24:3 (2017), 19–37