Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2016, Volume 19, Number 1, Pages 19–32
DOI: https://doi.org/10.15372/SJNM20160102
(Mi sjvm599)
 

This article is cited in 11 scientific papers (total in 11 papers)

Numerical models of mosaic homogeneous isotropic random fields and problems of radiative transfer

A. Yu. Ambos

Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 6 Lavrentiev pr., Novosibirsk, 630090, Russia
References:
Abstract: The new algorithms of statistical modeling of radiative transfer through different types of stochastic homogeneous isotropic media have been created. To this end a special geometric implementation of “the maximum cross-section method” has been developed. This implementation allows one to take into account the radiation absorption by the exponential multiplier factor. The dependence of a certain class of solution functionals of the radiative transfer equation on the correlation length and the field type is studied theoretically and by means of numerical experiments. The theorem about the convergence of these functionals to the corresponding functionals for an average field with decreasing the correlation length up to zero has been proved.
Key words: Poisson ensemble, random field, correlation function, radiative transfer, maximum cross-section method.
Received: 26.02.2015
Revised: 31.03.2015
English version:
Numerical Analysis and Applications, 2016, Volume 9, Issue 1, Pages 12–23
DOI: https://doi.org/10.1134/S199542391601002X
Bibliographic databases:
Document Type: Article
UDC: 519.245
Language: Russian
Citation: A. Yu. Ambos, “Numerical models of mosaic homogeneous isotropic random fields and problems of radiative transfer”, Sib. Zh. Vychisl. Mat., 19:1 (2016), 19–32; Num. Anal. Appl., 9:1 (2016), 12–23
Citation in format AMSBIB
\Bibitem{Amb16}
\by A.~Yu.~Ambos
\paper Numerical models of mosaic homogeneous isotropic random fields and problems of radiative transfer
\jour Sib. Zh. Vychisl. Mat.
\yr 2016
\vol 19
\issue 1
\pages 19--32
\mathnet{http://mi.mathnet.ru/sjvm599}
\crossref{https://doi.org/10.15372/SJNM20160102}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3508732}
\elib{https://elibrary.ru/item.asp?id=25464500}
\transl
\jour Num. Anal. Appl.
\yr 2016
\vol 9
\issue 1
\pages 12--23
\crossref{https://doi.org/10.1134/S199542391601002X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000374677500002}
\elib{https://elibrary.ru/item.asp?id=27145615}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962159967}
Linking options:
  • https://www.mathnet.ru/eng/sjvm599
  • https://www.mathnet.ru/eng/sjvm/v19/i1/p19
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:227
    Full-text PDF :63
    References:61
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024