Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2016, Volume 19, Number 1, Pages 19–32
DOI: https://doi.org/10.15372/SJNM20160102
(Mi sjvm599)
 

This article is cited in 12 scientific papers (total in 12 papers)

Numerical models of mosaic homogeneous isotropic random fields and problems of radiative transfer

A. Yu. Ambos

Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 6 Lavrentiev pr., Novosibirsk, 630090, Russia
References:
Abstract: The new algorithms of statistical modeling of radiative transfer through different types of stochastic homogeneous isotropic media have been created. To this end a special geometric implementation of “the maximum cross-section method” has been developed. This implementation allows one to take into account the radiation absorption by the exponential multiplier factor. The dependence of a certain class of solution functionals of the radiative transfer equation on the correlation length and the field type is studied theoretically and by means of numerical experiments. The theorem about the convergence of these functionals to the corresponding functionals for an average field with decreasing the correlation length up to zero has been proved.
Key words: Poisson ensemble, random field, correlation function, radiative transfer, maximum cross-section method.
Received: 26.02.2015
Revised: 31.03.2015
English version:
Numerical Analysis and Applications, 2016, Volume 9, Issue 1, Pages 12–23
DOI: https://doi.org/10.1134/S199542391601002X
Bibliographic databases:
Document Type: Article
UDC: 519.245
Language: Russian
Citation: A. Yu. Ambos, “Numerical models of mosaic homogeneous isotropic random fields and problems of radiative transfer”, Sib. Zh. Vychisl. Mat., 19:1 (2016), 19–32; Num. Anal. Appl., 9:1 (2016), 12–23
Citation in format AMSBIB
\Bibitem{Amb16}
\by A.~Yu.~Ambos
\paper Numerical models of mosaic homogeneous isotropic random fields and problems of radiative transfer
\jour Sib. Zh. Vychisl. Mat.
\yr 2016
\vol 19
\issue 1
\pages 19--32
\mathnet{http://mi.mathnet.ru/sjvm599}
\crossref{https://doi.org/10.15372/SJNM20160102}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3508732}
\elib{https://elibrary.ru/item.asp?id=25464500}
\transl
\jour Num. Anal. Appl.
\yr 2016
\vol 9
\issue 1
\pages 12--23
\crossref{https://doi.org/10.1134/S199542391601002X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000374677500002}
\elib{https://elibrary.ru/item.asp?id=27145615}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962159967}
Linking options:
  • https://www.mathnet.ru/eng/sjvm599
  • https://www.mathnet.ru/eng/sjvm/v19/i1/p19
  • This publication is cited in the following 12 articles:
    1. G. A. Mikhailov, I. N. Medvedev, “New Computer Efficient Approximations of Random Functions for Solving Stochastic Transport Problems”, Comput. Math. and Math. Phys., 64:2 (2024), 314  crossref
    2. G. A. Mikhailov, G. Z. Lotova, I. N. Medvedev, “Effektivno realizuemye priblizhennye modeli sluchainykh funktsii v stokhasticheskikh zadachakh teorii perenosa chastits”, Sib. zhurn. vychisl. matem., 27:2 (2024), 189–209  mathnet  crossref
    3. G. A. Mikhailov, G. Z. Lotova, I. N. Medvedev, “Efficiently Realized Approximate Models of Random Functions in Stochastic Problems of the Theory of Particle Transfer”, Numer. Analys. Appl., 17:2 (2024), 152  crossref
    4. G. Z. Lotova, G. A. Mikhailov, S. A. Rozhenko, “Optimization of a Numerical-Statistical Algorithm for Estimating the Mean Particle Flow in a Bounded Random Medium with Multiplication”, Comput. Math. and Math. Phys., 64:11 (2024), 2705  crossref
    5. G. A. Mikhailov, “Randomized algorithms of Monte Carlo method for problems with random parameters (“double randomization” method)”, Num. Anal. Appl., 12:2 (2019), 155–165  mathnet  crossref  crossref  isi  elib
    6. G. A. Mikhailov, “Improvement of multidimensional randomized Monte Carlo algorithms with “splitting””, Comput. Math. Math. Phys., 59:5 (2019), 775–781  mathnet  crossref  crossref  isi  elib
    7. A. Yu. Ambos, G. A. Mikhailov, “Estimation by Monte Carlo method of functional characteristics of the radiation intensity field passing throw a random medium”, Num. Anal. Appl., 11:4 (2018), 279–292  mathnet  crossref  crossref  isi  elib
    8. G. A. Mikhailov, G. Z. Lotova, “Monte Carlo methods for estimating the probability distributions of criticality parameters of particle transport in a randomly perturbed medium”, Comput. Math. Math. Phys., 58:11 (2018), 1828–1837  mathnet  crossref  crossref  isi  elib
    9. G. A. Mikhailov, “Optimization of randomized Monte Carlo algorithms for solving problems with random parameters”, Dokl. Math., 98:2 (2018), 448–451  mathnet  crossref  crossref  mathscinet  zmath  isi  scopus
    10. A. Yu. Ambos, G. A. Mikhailov, “Numerically statistical simulation of the intensity field of the radiation transmitted through a random medium”, Russ. J. Numer. Anal. Math. Model, 33:3 (2018), 161–171  crossref  mathscinet  zmath  isi  scopus
    11. G. A. Mikhailov, G. Z. Lotova, “New Monte Carlo algorithms for estimating probability moments of criticality parameters for a scattering process with multiplication in stochastic media”, Dokl. Math., 97:1 (2018), 6–10  mathnet  crossref  crossref  mathscinet  zmath  isi  scopus
    12. A. Yu. Ambos, G. Lotova, G. Mikhailov, “New Monte Carlo algorithms for investigation of criticality fluctuations in the particle scattering process with multiplication in stochastic media”, Russ. J. Numer. Anal. Math. Model, 32:3 (2017), 165–172  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:259
    Full-text PDF :77
    References:68
    First page:29
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025