Abstract:
In this paper, the kinematics of the tsunami wave ray and wave front above an uneven bottom is studied. The formula to determine the wave height along a ray tube is obtained. The exact analytical solution for the wave-ray trajectory above the bottom slope is derived. This solution gives the possibility to determine within the wave-ray approach the tsunami wave heights in an area with a sloping bottom relief. The distribution of the wave-height maxima in the area with the sloping bottom is compared to the one obtained by the numerical computation with a shallow-water model.
Citation:
An. G. Marchuk, “The assessment of tsunami heights above the bottom slope within the wave-ray approach”, Sib. Zh. Vychisl. Mat., 18:4 (2015), 377–388; Num. Anal. Appl., 8:4 (2015), 304–313
\Bibitem{Mar15}
\by An.~G.~Marchuk
\paper The assessment of tsunami heights above the bottom slope within the wave-ray approach
\jour Sib. Zh. Vychisl. Mat.
\yr 2015
\vol 18
\issue 4
\pages 377--388
\mathnet{http://mi.mathnet.ru/sjvm590}
\crossref{https://doi.org/15372/SJNM20150404}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3492921}
\elib{https://elibrary.ru/item.asp?id=24817585}
\transl
\jour Num. Anal. Appl.
\yr 2015
\vol 8
\issue 4
\pages 304--313
\crossref{https://doi.org/10.1134/S1995423915040047}
\elib{https://elibrary.ru/item.asp?id=24974242}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84948397678}
Linking options:
https://www.mathnet.ru/eng/sjvm590
https://www.mathnet.ru/eng/sjvm/v18/i4/p377
This publication is cited in the following 12 articles:
Mikhail Lavrentiev, Andrey Marchuk, Konstantin Oblaukhov, “Low power computation of transoceanic wave propagation for tsunami hazard mitigation”, Ocean Modelling, 192 (2024), 102459
A. G. Marchuk, “Capture of Wave Energy by Islands”, jour, 21:3 (2023), 20
An. G. Marchuk, “Restoration of the ocean depth using recorded tsunami arrival times”, Num. Anal. Appl., 14:1 (2021), 83–89
Lavrentiev M., Lysakov K., Marchuk A., Oblaukhov K., Shadrin M., “Algorithmic Design of An Fpga-Based Calculator For Fast Evaluation of Tsunami Wave Danger”, Algorithms, 14:12 (2021), 343
Lavrentiev M.M., Marchuk A.G., “Fast Modelling of Tsunami Wave Propagation Using Pc With Hardware Computer Code Acceleration”, J. Sib. Fed. Univ.-Math. Phys., 14:4 (2021), 433–444
M. Lavrentiev, K. Lysakov, A. Marchuk, K. Oblaukhov, M. Shadrin, “Hardware acceleration of tsunami wave propagation modeling in the southern part of japan”, Appl. Sci.-Basel, 10:12 (2020), 4159
V. V. Churuksaeva, A. V. Starchenko, “Numerical modelling of pollution transport in tom river”, Vestn. Tomsk. Gos. Univ.-Mat. Mek., 2020, no. 64, 48–62
M Lavrentiev, An Marchuk, K Oblaukhov, A Romanenko, “Comparative testing of MOST and Mac-Cormack numerical schemes to calculate tsunami wave propagation”, J. Phys.: Conf. Ser., 1666:1 (2020), 012028
Mikhail Lavrentiev, Konstantin Lysakov, Andrey Marchuk, Konstantin Oblaukhov, Mikhail Shadrin, OCEANS 2019 - Marseille, 2019, 1
E. D. Moskalensky, “The novel class of exact solutions of the two-dimensional eikonal equation when the velocity in a medium depends on one spatial coordinate”, Num. Anal. Appl., 11:3 (2018), 208–219
An. G. Marchuk, “The assessment of tsunami heights above the parabolic bottom relief within the wave-ray approach”, Num. Anal. Appl., 10:1 (2017), 17–27