Processing math: 100%
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2015, Volume 18, Number 3, Pages 289–303
DOI: https://doi.org/10.15372/SJNM20150304
(Mi sjvm582)
 

This article is cited in 17 scientific papers (total in 17 papers)

The Lagrange interpolation and the Newton–Cotes formulas for functions with a boundary layer component on piecewise-uniform meshes

A. I. Zadorin

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, 13 Pevtsov str., Omsk, 644099, Russia
References:
Abstract: The interpolation problem of a one-variable function, which can be considered as a solution of a boundary value problem for an equation with a small parameter ε with a higher derivative is investigated. The application of the Lagrange interpolation for such a function on a uniform grid can result in serious errors. In the case of the Shishkin mesh, ε-uniform error estimates of the Lagrange interpolation are obtained. The Shishkin mesh is modified to increase the interpolation accuracy. The ε-uniform error estimates of the Newton–Cotes formulas on such meshes are obtained. Numerical experiments have been carried out. The results obtained confirm the theoretical estimates.
Key words: one-variable function, boundary layer, high gradients, Shishkin mesh, Lagrange interpolation, Newton–Cotes formula, error estimate.
Received: 28.05.2014
Revised: 06.08.2014
English version:
Numerical Analysis and Applications, 2015, Volume 8, Issue 3, Pages 235–247
DOI: https://doi.org/10.1134/S1995423915030040
Bibliographic databases:
Document Type: Article
UDC: 519.652
Language: Russian
Citation: A. I. Zadorin, “The Lagrange interpolation and the Newton–Cotes formulas for functions with a boundary layer component on piecewise-uniform meshes”, Sib. Zh. Vychisl. Mat., 18:3 (2015), 289–303; Num. Anal. Appl., 8:3 (2015), 235–247
Citation in format AMSBIB
\Bibitem{Zad15}
\by A.~I.~Zadorin
\paper The Lagrange interpolation and the Newton--Cotes formulas for functions with a~boundary layer component on piecewise-uniform meshes
\jour Sib. Zh. Vychisl. Mat.
\yr 2015
\vol 18
\issue 3
\pages 289--303
\mathnet{http://mi.mathnet.ru/sjvm582}
\crossref{https://doi.org/10.15372/SJNM20150304}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3492614}
\elib{https://elibrary.ru/item.asp?id=23907300}
\transl
\jour Num. Anal. Appl.
\yr 2015
\vol 8
\issue 3
\pages 235--247
\crossref{https://doi.org/10.1134/S1995423915030040}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938585537}
Linking options:
  • https://www.mathnet.ru/eng/sjvm582
  • https://www.mathnet.ru/eng/sjvm/v18/i3/p289
  • This publication is cited in the following 17 articles:
    1. A. I. Zadorin, “Two-dimensional interpolation of functions with large gradients in boundary layers”, Sib. elektron. matem. izv., 19:2 (2022), 688–697  mathnet  crossref  mathscinet
    2. A. I. Zadorin, N. A. Zadorin, “Lagrange interpolation and the Newton–Cotes formulas on a Bakhvalov mesh in the presence of a boundary layer”, Comput. Math. Math. Phys., 62:2 (2022), 347–358  mathnet  mathnet  crossref  crossref  isi  scopus
    3. A I Zadorin, “Approaches to constructing two-dimensional interpolation formulas in the presence of boundary layers”, J. Phys.: Conf. Ser., 2182:1 (2022), 012036  crossref
    4. N. A. Zadorin, “Optimization of nodes of composite quadrature formulas in the presence of a boundary layer”, Sib. elektron. matem. izv., 18:2 (2021), 1201–1209  mathnet  crossref
    5. A. I. Zadorin, N. A. Zadorin, “Non-polynomial interpolation of functions with large gradients and its application”, Comput. Math. Math. Phys., 61:2 (2021), 167–176  mathnet  crossref  crossref  isi  elib
    6. N A Zadorin, S B Shagaev, “Two-grid method for the stationary Burgers equation”, J. Phys.: Conf. Ser., 1791:1 (2021), 012090  crossref
    7. A I Zadorin, “New approaches to constructing quadrature formulas for functions with large gradients”, J. Phys.: Conf. Ser., 1901:1 (2021), 012055  crossref
    8. A. I. Zadorin, “Optimization of nodes of newton-cotes formulas in the presence of an exponential boundary layer”, Iv International Scientific and Technical Conference Mechanical Science and Technology Update (Mstu-2020), Journal of Physics Conference Series, 1546, IOP Publishing Ltd, 2020, 012107  crossref  isi  scopus
    9. N A Zadorin, “Non-polynomial interpolation of functions in the presence of a boundary layer”, J. Phys.: Conf. Ser., 1441:1 (2020), 012179  crossref
    10. I. A. Blatov, N. A. Zadorin, “Interpolyatsiya na setke Bakhvalova pri nalichii eksponentsialnogo pogranichnogo sloya”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 161, no. 4, Izd-vo Kazanskogo un-ta, Kazan, 2019, 497–508  mathnet  crossref
    11. I. A. Blatov, A. I. Zadorin, E. V. Kitaeva, “Approximation of a function and its derivatives on the basis of cubic spline interpolation in the presence of a boundary layer”, Comput. Math. Math. Phys., 59:3 (2019), 343–354  mathnet  crossref  crossref  isi  elib
    12. A. I. Zadorin, “The analysis of numerical differentiation formulas on the Shishkin mesh with of a boundary layer”, Num. Anal. Appl., 11:3 (2018), 193–203  mathnet  crossref  crossref  isi  elib  elib
    13. I. A. Blatov, A. I. Zadorin, E. V. Kitaeva, “Cubic spline interpolation of functions with high gradients in boundary layers”, Comput. Math. Math. Phys., 57:1 (2017), 7–25  mathnet  crossref  crossref  isi  elib
    14. I. A. Blatov, A. I. Zadorin, E. V. Kitaeva, “About the uniform convergence of parabolic spline interpolation on the class of functions with large gradients in the boundary layer”, Num. Anal. Appl., 10:2 (2017), 108–119  mathnet  crossref  crossref  isi  elib
    15. I. A. Blatov, A. I. Zadorin, E. V. Kitaeva, “Parabolic spline interpolation for functions with large gradient in the boundary layer”, Siberian Math. J., 58:4 (2017), 578–590  mathnet  crossref  crossref  isi  elib  elib
    16. A. I. Zadorin, N. A. Zadorin, “Polinomialnaya interpolyatsiya funktsii dvukh peremennykh s bolshimi gradientami v pogranichnykh sloyakh”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 158, no. 1, Izd-vo Kazanskogo un-ta, Kazan, 2016, 40–50  mathnet  elib
    17. A. I. Zadorin, “Kvadraturnaya formula Gaussa na kusochno-ravnomernoi setke dlya funktsii s bolshimi gradientami v pogranichnom sloe”, Sib. elektron. matem. izv., 13 (2016), 101–110  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:712
    Full-text PDF :339
    References:74
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025