Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2015, Volume 18, Number 2, Pages 191–200
DOI: https://doi.org/10.15372/SJNM20150207
(Mi sjvm576)
 

This article is cited in 2 scientific papers (total in 2 papers)

Calculation of the number of states in binary Markov stochastic models

L. Ya. Savelievab

a Sobolev Institute Mathematics of SB RAS, 4 Acad. Koptyug pr., Novosibirsk, 630090, Russia
b Novosibirsk State University, 2 Pirogova str., Novosibirsk, 630090, Russia
Full-text PDF (373 kB) Citations (2)
References:
Abstract: This paper derives exact and approximate formulas for the distribution, average values and variances of the number of units on the segments of binary Markov sequences. Various ways to calculate these formulas are proposed. Estimates of the errors are given. An example of the calculation for a binary Markov model of the precipitation process is presented.
Key words: stochastic model, binary Markov chain, distribution, generating function, mean, variance.
Received: 26.12.2013
Revised: 28.02.2014
English version:
Numerical Analysis and Applications, 2015, Volume 8, Issue 2, Pages 159–167
DOI: https://doi.org/10.1134/S199542391502007X
Bibliographic databases:
Document Type: Article
UDC: 519.21+519.61
Language: Russian
Citation: L. Ya. Saveliev, “Calculation of the number of states in binary Markov stochastic models”, Sib. Zh. Vychisl. Mat., 18:2 (2015), 191–200; Num. Anal. Appl., 8:2 (2015), 159–167
Citation in format AMSBIB
\Bibitem{Sav15}
\by L.~Ya.~Saveliev
\paper Calculation of the number of states in binary Markov stochastic models
\jour Sib. Zh. Vychisl. Mat.
\yr 2015
\vol 18
\issue 2
\pages 191--200
\mathnet{http://mi.mathnet.ru/sjvm576}
\crossref{https://doi.org/10.15372/SJNM20150207}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3491696}
\elib{https://elibrary.ru/item.asp?id=23463697}
\transl
\jour Num. Anal. Appl.
\yr 2015
\vol 8
\issue 2
\pages 159--167
\crossref{https://doi.org/10.1134/S199542391502007X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84930678488}
Linking options:
  • https://www.mathnet.ru/eng/sjvm576
  • https://www.mathnet.ru/eng/sjvm/v18/i2/p191
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:303
    Full-text PDF :73
    References:57
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024