Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2015, Volume 18, Number 1, Pages 15–26 (Mi sjvm563)  

This article is cited in 4 scientific papers (total in 4 papers)

New frequency characteristics of the numerical solution to stochastic differential equations

S. S. Artemievab, A. A. Ivanova, D. D. Smirnovb

a Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 6 Lavrentiev pr., Novosibirsk, 630090, Russia
b Novosibirsk State University, 2 Pirogova str., Novosibirsk, 630090, Russia
References:
Abstract: The problems of the numerical analysis of stochastic differential equations with oscillatory solutions trajectories are studied. For the analysis of the numerical solution it is proposed to use the frequency response of generalizing the integral curve and the phase portrait. The results of numerical experiments carried out on a cluster of NCC-30T Siberian Supercomputer Center at the ICM&MG SB RAS using a set of programs PARMONC are presented.
Key words: stochastic differential equations, cumulative frequency curve, frequency phase portrait, generalized Euler's method.
Received: 25.06.2013
Revised: 31.03.2014
English version:
Numerical Analysis and Applications, 2015, Volume 8, Issue 1, Pages 13–22
DOI: https://doi.org/10.1134/S1995423915010024
Bibliographic databases:
Document Type: Article
UDC: 519.676
Language: Russian
Citation: S. S. Artemiev, A. A. Ivanov, D. D. Smirnov, “New frequency characteristics of the numerical solution to stochastic differential equations”, Sib. Zh. Vychisl. Mat., 18:1 (2015), 15–26; Num. Anal. Appl., 8:1 (2015), 13–22
Citation in format AMSBIB
\Bibitem{ArtIvaSmi15}
\by S.~S.~Artemiev, A.~A.~Ivanov, D.~D.~Smirnov
\paper New frequency characteristics of the numerical solution to stochastic differential equations
\jour Sib. Zh. Vychisl. Mat.
\yr 2015
\vol 18
\issue 1
\pages 15--26
\mathnet{http://mi.mathnet.ru/sjvm563}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3491302}
\elib{https://elibrary.ru/item.asp?id=22935529}
\transl
\jour Num. Anal. Appl.
\yr 2015
\vol 8
\issue 1
\pages 13--22
\crossref{https://doi.org/10.1134/S1995423915010024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924348272}
Linking options:
  • https://www.mathnet.ru/eng/sjvm563
  • https://www.mathnet.ru/eng/sjvm/v18/i1/p15
  • This publication is cited in the following 4 articles:
    1. A. A. Ivanov, “Analysis of the stochastic motion of a charged particle in a magnetic field by the Monte Carlo method on supercomputers”, J. Appl. Industr. Math., 11:3 (2017), 362–368  mathnet  crossref  crossref  elib
    2. S. S. Artemiev, A. A. Ivanov, “Analysis of the influence of random noises for self-oscillating chemical reactions by a Monte-Carlo method on supercomputers”, J. Appl. Industr. Math., 10:4 (2016), 468–473  mathnet  crossref  crossref  mathscinet  elib
    3. S. S. Artemiev, A. A. Ivanov, “Analysis of the effect of random noise on the strange attractors of Monte Carlo on a supercomputer”, Num. Anal. Appl., 8:2 (2015), 101–112  mathnet  crossref  crossref  mathscinet  elib
    4. T. A. Averina, S. S. Artemev, D. D. Smirnov, “Chislennyi analiz stokhasticheskoi modeli prodolnogo dvizheniya rakety metodom Monte–Karlo na superkompyutere”, Sib. zhurn. industr. matem., 18:3 (2015), 3–10  mathnet  crossref  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:453
    Full-text PDF :96
    References:66
    First page:36
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025