Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2014, Volume 17, Number 4, Pages 339–348 (Mi sjvm554)  

This article is cited in 6 scientific papers (total in 6 papers)

Which of inverse problems can have a priori approximate solution accuracy estimates comparable in order with the data accuracy

A. S. Leonov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe shosse, Moscow, 115409, Russia
Full-text PDF (408 kB) Citations (6)
References:
Abstract: It is proved that a priori global accuracy estimate for approximate solutions to linear inverse problems with perturbed data can be of the same order as approximate data errors for well-posed in the sense of Tikhonov problems only. A method for assessing the quality of selected sets of correctness is proposed. The use of the generalized residual method on a set of correctness allows us to solve the inverse problem and to obtain a posteriori accuracy estimate for approximate solutions, which is comparable with the accuracy of the problem data. The approach proposed is illustrated by a numerical example.
Key words: linear inverse problems, correctness in the sense of Tikhonov, a priori and a posteriori accuracy estimate.
Received: 05.12.2013
Revised: 29.01.2014
English version:
Numerical Analysis and Applications, 2014, Volume 7, Issue 4, Pages 284–292
DOI: https://doi.org/10.1134/S199542391404003X
Bibliographic databases:
Document Type: Article
UDC: 517.397
Language: Russian
Citation: A. S. Leonov, “Which of inverse problems can have a priori approximate solution accuracy estimates comparable in order with the data accuracy”, Sib. Zh. Vychisl. Mat., 17:4 (2014), 339–348; Num. Anal. Appl., 7:4 (2014), 284–292
Citation in format AMSBIB
\Bibitem{Leo14}
\by A.~S.~Leonov
\paper Which of inverse problems can have a~priori approximate solution accuracy estimates comparable in order with the data accuracy
\jour Sib. Zh. Vychisl. Mat.
\yr 2014
\vol 17
\issue 4
\pages 339--348
\mathnet{http://mi.mathnet.ru/sjvm554}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3409492}
\transl
\jour Num. Anal. Appl.
\yr 2014
\vol 7
\issue 4
\pages 284--292
\crossref{https://doi.org/10.1134/S199542391404003X}
Linking options:
  • https://www.mathnet.ru/eng/sjvm554
  • https://www.mathnet.ru/eng/sjvm/v17/i4/p339
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:376
    Full-text PDF :106
    References:62
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024