Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2014, Volume 17, Number 3, Pages 273–288 (Mi sjvm548)  

Convergence of $H^1$-Galerkin mixed finite element method for parabolic problems with reduced regularity of initial data

M. Tripathy, Rajen Kumar Sinha

Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati, 781039, India
References:
Abstract: We study the convergence of an $H^1$1-Galerkin mixed finite element method for parabolic problems in one space dimension. Both semi-discrete and fully discrete schemes are analyzed assuming reduced regularity of the initial data. More precisely, for a spatially discrete scheme error estimates of order $\mathcal O(h^2t^{-1/2})$ for positive time are established assuming the initial function $p_0\in H^2(\Omega)\cap H_0^1(\Omega)$. Further, we use an energy technique together with a parabolic duality argument to derive error estimates of order $\mathcal O(h^2t^{-1})$ when $p_0$ is only in $H_0^1(\Omega)$. A discrete-in-time backward Euler method is analyzed and almost optimal order error bounds are established.
Key words: parabolic problems, $H^1$-Galerkin mixed finite element method, semi-discrete scheme, backward Euler method, error estimates.
Received: 22.04.2013
English version:
Numerical Analysis and Applications, 2014, Volume 7, Issue 3, Pages 227–240
DOI: https://doi.org/10.1134/S1995423914030057
Bibliographic databases:
Document Type: Article
MSC: 65M60, 65M15, 65M12
Language: Russian
Citation: M. Tripathy, Rajen Kumar Sinha, “Convergence of $H^1$-Galerkin mixed finite element method for parabolic problems with reduced regularity of initial data”, Sib. Zh. Vychisl. Mat., 17:3 (2014), 273–288; Num. Anal. Appl., 7:3 (2014), 227–240
Citation in format AMSBIB
\Bibitem{TriSin14}
\by M.~Tripathy, Rajen~Kumar~Sinha
\paper Convergence of $H^1$-Galerkin mixed finite element method for parabolic problems with reduced regularity of initial data
\jour Sib. Zh. Vychisl. Mat.
\yr 2014
\vol 17
\issue 3
\pages 273--288
\mathnet{http://mi.mathnet.ru/sjvm548}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3409486}
\transl
\jour Num. Anal. Appl.
\yr 2014
\vol 7
\issue 3
\pages 227--240
\crossref{https://doi.org/10.1134/S1995423914030057}
Linking options:
  • https://www.mathnet.ru/eng/sjvm548
  • https://www.mathnet.ru/eng/sjvm/v17/i3/p273
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:195
    Full-text PDF :61
    References:36
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024