Abstract:
This paper describes a modification of a power series for the construction of approximate solutions of the Lorenz system. The results of the computer-aided simulation are presented. Also, the physical modeling of the dynamics of the Lorenz system of the processes occurring in the circuit are considered.
Key words:
Lorenz system, analog multiplier, integrator, method of power series, radius of convergence, free convection, Lorenz attractor.
Citation:
A. N. Pchelintsev, “Numerical and physical modeling of the Lorenz system dynamics”, Sib. Zh. Vychisl. Mat., 17:2 (2014), 191–201; Num. Anal. Appl., 7:2 (2014), 159–167
This publication is cited in the following 33 articles:
Sroor M. Elnady, Mohamed El-Beltagy, Ahmed G. Radwan, Mohammed E. Fouda, “A generalized local fractional derivative with applications”, Journal of Computational Physics, 530 (2025), 113903
Oleg V. Lapshin, Ivan S. Polyakov, Evgeny N. Boyangin, “Macrokinetics of mixing binary powder compositions, augmented by the DEM method and experimental studies on the chemically reactive system 3Ni – Al”, Powder Technology, 2025, 121074
Simone Fiori, “A Coordinate-Free Variational Approach to Fourth-Order Dynamical Systems on Manifolds: A System and Control Theoretic Viewpoint”, Mathematics, 12:3 (2024), 428
Süleyman UZUN, Sezgin Kaçar, Burak Ar{\i}c{\i}oğlu, “Deep learning based classification of time series of chaotic systems over graphic images”, Multimed Tools Appl, 83:3 (2024), 8413
Mohammad H. Akrami, Kolade M. Owolabi, “On the solution of fractional differential equations using Atangana's beta derivative and its applications in chaotic systems”, Scientific African, 21 (2023), e01879
Devisha Tiwari, Bhaskar Mondal, Sunil Kumar Singh, Deepika Koundal, “Lightweight encryption for privacy protection of data transmission in cyber physical systems”, Cluster Comput, 26:4 (2023), 2351
M. V. Lyakhovets, G. V. Makarov, A. S. Salamatin, “Data generation for digital simulators of metallurgical process operators”, Izv. vysš. učebn. zaved., Čern. metall., 66:2 (2023), 236
Gleb Vodinchar , Lyubov Feshchenko, “Fractal Properties of the Magnetic Polarity Scale in the Stochastic Hereditary αω-Dynamo Model”, Fractal Fract, 6:6 (2022), 328
Jiri Petrzela, “Chaos in Analog Electronic Circuits: Comprehensive Review, Solved Problems, Open Topics and Small Example”, Mathematics, 10:21 (2022), 4108
Pchelintsev A.N., “On the Poisson Stability to Study a Fourth-Order Dynamical System With Quadratic Nonlinearities”, Mathematics, 9:17 (2021), 2057
Cerdan L., “Ultrashort Pulse Generation in Nanolasers By Means of Lorenz-Haken Instabilities”, Ann. Phys.-Berlin, 533:9 (2021), 2100122
Shatalov M., Surulere S., Phadime L., Mthombeni T., “Parameter Identification of Lorenz System With Incomplete Information: Case of One Known and Two Unknown Functions”, Int. J. Eng. Res. Afr., 55 (2021), 103–121
Siyu Guo, Albert C. J. Luo, “A Family of Periodic Motions to Chaos with Infinite Homoclinic Orbits in the Lorenz System”, Lobachevskii J Math, 42:14 (2021), 3382
Vodinchar G., “Hereditary Oscillator Associated With the Model of a Large-Scale Alpha Omega-Dynamo”, Mathematics, 8:11 (2020), 2065
Polunovskii A.A., “Time Expansions of Equations of Mathematical Physics”, Differ. Equ., 56:3 (2020), 381–391
Driss Z., Mansouri N., “Synchronisation of Chaotic Systems Using Neural Generalised Predictive Control”, Int. J. Autom. Control, 14:4 (2020), 377–398
F. Prebianca, D. W. C. Marcondes, H. A. Albuquerque, M. W. Beims, “Exploring an experimental analog Chua's circuit”, Eur. Phys. J. B, 92:6 (2019), 134
J.-M. Li, Yu.-L. Wang, W. Zhang, “Numerical simulation of the Lorenz-type chaotic system using barycentric Lagrange interpolation collocation method”, Adv. Math. Phys., 2019 (2019), 1030318
A. N. Pchelintsev, A. A. Polunovskii, I. Yu. Yukhanova, “Metod garmonicheskogo balansa dlya otyskaniya priblizhennykh periodicheskikh reshenii sistemy Lorentsa”, Vestnik rossiiskikh universitetov. Matematika, 24:126 (2019), 187–203
L. Bougoffa, S. Al-Awfi, S. Bougouffa, “A complete and partial integrability technique of the Lorenz system”, Results Phys., 9 (2018), 712–716