Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2014, Volume 17, Number 2, Pages 163–176 (Mi sjvm540)  

Numerical-analytical modeling of wave fields for complex subsurface geometries and structures

B. G. Mikhailenko, A. G. Fatyanov

Institute of Computational Mathematics and Mathematical Geophysics SB RAS, pr. Lavrentjeva, 6, Novosibirsk, 630090, Russia
References:
Abstract: In this paper we propose an analytical method of modeling seismic wave fields for a wide range of geophysical media: elastic, non-elastic, anisotropic, anisotropic-non-elastic, porous, random-inhomogeneous, etc. for super-remote (far) distances. As finite difference approximations are not used, there is no grid dispersion when computing wave fields for arbitrary media models and observation points. The analytical solution representation in the spectral domain makes possible to carry out the analysis of a wave field in parts, specifically, to obtain the primary waves. Based on the developed program of computing the wave fields, we have carried out the simulation of water waves and seismic “ringing” on the Moon. The monotone displacement resonant to the lower frequency area with increasing the recording distance has been explained. Such a displacement was detected in experiments with a seismic vibrator.
Key words: mathematical modeling, analytical solution, full wave fields, primary waves, elastic, non-elastic, anisotropic-non-elastic, porous, random-inhomogeneous media.
Received: 19.11.2013
Revised: 25.11.2013
English version:
Numerical Analysis and Applications, 2014, Volume 7, Issue 2, Pages 136–146
DOI: https://doi.org/10.1134/S1995423914020074
Bibliographic databases:
Document Type: Article
UDC: 550.344
Language: Russian
Citation: B. G. Mikhailenko, A. G. Fatyanov, “Numerical-analytical modeling of wave fields for complex subsurface geometries and structures”, Sib. Zh. Vychisl. Mat., 17:2 (2014), 163–176; Num. Anal. Appl., 7:2 (2014), 136–146
Citation in format AMSBIB
\Bibitem{MikFat14}
\by B.~G.~Mikhailenko, A.~G.~Fatyanov
\paper Numerical-analytical modeling of wave fields for complex subsurface geometries and structures
\jour Sib. Zh. Vychisl. Mat.
\yr 2014
\vol 17
\issue 2
\pages 163--176
\mathnet{http://mi.mathnet.ru/sjvm540}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3409478}
\transl
\jour Num. Anal. Appl.
\yr 2014
\vol 7
\issue 2
\pages 136--146
\crossref{https://doi.org/10.1134/S1995423914020074}
Linking options:
  • https://www.mathnet.ru/eng/sjvm540
  • https://www.mathnet.ru/eng/sjvm/v17/i2/p163
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:328
    Full-text PDF :167
    References:64
    First page:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024