Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2013, Volume 16, Number 4, Pages 377–391 (Mi sjvm525)  

This article is cited in 12 scientific papers (total in 12 papers)

An approximate solution of the optimal nonlinear filtering problem for stochastic differential systems by statistical modeling

K. A. Rybakov

Moscow Aviation Institute (State Technical University), Volokolamskoye sh. 4, A-80, GSP-3, Moscow, 125993, Russia
References:
Abstract: An algorithm for solving the optimal nonlinear filtering problem by statistical modeling is proposed. It is based on reducing the filtration problem to the analysis of stochastic systems with terminating and branching paths, using a structure similarity of the Duncan–Mortensen–Zakai equations and the generalized Fokker–Planck–Kolmogorov equation. The solution of such problem of analysis can be approximately found by using numerical methods for solving stochastic differential equations and methods for modeling inhomogeneous Poisson flows.
Key words: branching processes, conditional density, the Duncan–Mortensen–Zakai equation, Monte Carlo method, optimal filtering problem, stochastic system.
Received: 10.01.2013
Revised: 20.02.2013
English version:
Numerical Analysis and Applications, 2013, Volume 6, Issue 4, Pages 324–336
DOI: https://doi.org/10.1134/S1995423913040071
Bibliographic databases:
Document Type: Article
UDC: 519.676
Language: Russian
Citation: K. A. Rybakov, “An approximate solution of the optimal nonlinear filtering problem for stochastic differential systems by statistical modeling”, Sib. Zh. Vychisl. Mat., 16:4 (2013), 377–391; Num. Anal. Appl., 6:4 (2013), 324–336
Citation in format AMSBIB
\Bibitem{Ryb13}
\by K.~A.~Rybakov
\paper An approximate solution of the optimal nonlinear filtering problem for stochastic differential systems by statistical modeling
\jour Sib. Zh. Vychisl. Mat.
\yr 2013
\vol 16
\issue 4
\pages 377--391
\mathnet{http://mi.mathnet.ru/sjvm525}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3380136}
\elib{https://elibrary.ru/item.asp?id=21896873}
\transl
\jour Num. Anal. Appl.
\yr 2013
\vol 6
\issue 4
\pages 324--336
\crossref{https://doi.org/10.1134/S1995423913040071}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888996714}
Linking options:
  • https://www.mathnet.ru/eng/sjvm525
  • https://www.mathnet.ru/eng/sjvm/v16/i4/p377
  • This publication is cited in the following 12 articles:
    1. T. A. Averina, K. A. Rybakov, “Metody tipa Rozenbroka dlya resheniya stokhasticheskikh differentsialnykh uravnenii”, Sib. zhurn. vychisl. matem., 27:2 (2024), 123–145  mathnet  crossref
    2. T. A. Averina, K. A. Rybakov, “Rosenbrock-Type Methods for Solving Stochastic Differential Equations”, Numer. Analys. Appl., 17:2 (2024), 99  crossref
    3. Konstantin A. Rybakov, Smart Innovation, Systems and Technologies, 217, Applied Mathematics and Computational Mechanics for Smart Applications, 2021, 287  crossref
    4. T Averina, K Rybakov, “Statistical filtering algorithms based on the maximum cross section method for stochastic systems with regime switching”, J. Phys.: Conf. Ser., 1715:1 (2021), 012060  crossref
    5. K Rybakov, “Modified spectral method for optimal estimation in linear continuous-time stochastic systems”, J. Phys.: Conf. Ser., 1864:1 (2021), 012025  crossref
    6. Konstantin N. Chugai, Ivan M. Kosachev, Konstantin A. Rybakov, Smart Innovation, Systems and Technologies, 173, Advances in Theory and Practice of Computational Mechanics, 2020, 351  crossref
    7. K. Rybakov, 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), 2020, 1  crossref
    8. F Mesa, D M Devia, R Ospina, “Estimation of the parameters of the particular solution of a partial differential equation through Cramer Rao”, J. Phys.: Conf. Ser., 1671:1 (2020), 012014  crossref
    9. K Rybakov, “Application of Walsh series to represent iterated Stratonovich stochastic integrals”, IOP Conf. Ser.: Mater. Sci. Eng., 927:1 (2020), 012080  crossref
    10. T. A. Averina, K. A. Rybakov, “An approximate solution of the prediction problem for stochastic jump-diffusion systems”, Num. Anal. Appl., 10:1 (2017), 1–10  mathnet  crossref  crossref  mathscinet  isi  elib
    11. K. Rybakov, “Robust Duncan–Mortensen–Zakai equation for non-stationary stochastic systems”, 2017 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), IEEE, 2017, 151–154  crossref  mathscinet  isi
    12. E. A. Rudenko, “Optimal structure of continuous nonlinear reduced-order Pugachev filter”, J. Comput. Syst. Sci. Int., 52:6 (2013), 866–892  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:395
    Full-text PDF :136
    References:59
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025