Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2013, Volume 16, Number 4, Pages 347–364 (Mi sjvm523)  

A class of $A(\alpha)$-stable numerical methods for stiff problems in ordinary differential equations

R. I. Okuonghae

Department of Mathematics, University of Benin, P. M. B 1154, Benin City, Edo state, Nigeria
References:
Abstract: The $A(\alpha)$-stable numerical methods (ANM) for the number of steps $k\le7$ for stiff initial value problems (IVPs) in ordinary differential equations (ODEs) are proposed. The discrete schemes proposed from their equivalent continuous schemes are obtained. The scaled time variable $t$ in a continuous method, which determines the discrete coefficients of the discrete method is chosen in such a way as to ensure that the discrete scheme attains a high order and $A(\alpha)$-stability. We select the value of $\alpha$ for which the schemes proposed are absolutely stable. The new algorithms are found to have a comparable accuracy with that of the backward differentiation formula (BDF) discussed in [12] which implements the Ode15s in the Matlab suite.
Key words: stiff IVPs, continuous LMM, collocation and interpolation approach, boundary locus.
Received: 27.08.2012
English version:
Numerical Analysis and Applications, 2013, Volume 6, Issue 4, Pages 298–313
DOI: https://doi.org/10.1134/S1995423913040058
Bibliographic databases:
Document Type: Article
MSC: 65L05, 65L06
Language: Russian
Citation: R. I. Okuonghae, “A class of $A(\alpha)$-stable numerical methods for stiff problems in ordinary differential equations”, Sib. Zh. Vychisl. Mat., 16:4 (2013), 347–364; Num. Anal. Appl., 6:4 (2013), 298–313
Citation in format AMSBIB
\Bibitem{Oku13}
\by R.~I.~Okuonghae
\paper A class of $A(\alpha)$-stable numerical methods for stiff problems in ordinary differential equations
\jour Sib. Zh. Vychisl. Mat.
\yr 2013
\vol 16
\issue 4
\pages 347--364
\mathnet{http://mi.mathnet.ru/sjvm523}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3380134}
\transl
\jour Num. Anal. Appl.
\yr 2013
\vol 6
\issue 4
\pages 298--313
\crossref{https://doi.org/10.1134/S1995423913040058}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889005010}
Linking options:
  • https://www.mathnet.ru/eng/sjvm523
  • https://www.mathnet.ru/eng/sjvm/v16/i4/p347
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:319
    Full-text PDF :87
    References:42
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024