Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2013, Volume 16, Number 3, Pages 205–215 (Mi sjvm511)  

Enumeration problems of sets of increasing and decreasing $n$-valued serial sequences with double-ended constraints on series heights

V. A. Amelkin

Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: Enumeration problems for $n$-valued serial sequences are considered. Sets of increasing and decreasing sequences whose structure is specified by constraints on lengths of series and on a difference in heights of the neighboring series in the case when this difference lies between $\delta_1$ and $\delta_2$ are examined.
Formulas for powers of these sets and algorithms for the direct and reverse numerations (assigning smaller numbers to the lexicographically lower-order sequences or smaller numbers to the lexicographically higher-order sequences) are obtained.
Key words: serial sequences, series length, series height, constraints.
Received: 06.09.2011
English version:
Numerical Analysis and Applications, 2013, Volume 6, Issue 3, Pages 177–186
DOI: https://doi.org/10.1134/S1995423913030014
Bibliographic databases:
Document Type: Article
UDC: 519.115
Language: Russian
Citation: V. A. Amelkin, “Enumeration problems of sets of increasing and decreasing $n$-valued serial sequences with double-ended constraints on series heights”, Sib. Zh. Vychisl. Mat., 16:3 (2013), 205–215; Num. Anal. Appl., 6:3 (2013), 177–186
Citation in format AMSBIB
\Bibitem{Ame13}
\by V.~A.~Amelkin
\paper Enumeration problems of sets of increasing and decreasing $n$-valued serial sequences with double-ended constraints on series heights
\jour Sib. Zh. Vychisl. Mat.
\yr 2013
\vol 16
\issue 3
\pages 205--215
\mathnet{http://mi.mathnet.ru/sjvm511}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3380122}
\transl
\jour Num. Anal. Appl.
\yr 2013
\vol 6
\issue 3
\pages 177--186
\crossref{https://doi.org/10.1134/S1995423913030014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884156918}
Linking options:
  • https://www.mathnet.ru/eng/sjvm511
  • https://www.mathnet.ru/eng/sjvm/v16/i3/p205
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024