Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2013, Volume 16, Number 1, Pages 11–25 (Mi sjvm494)  

This article is cited in 7 scientific papers (total in 7 papers)

Solution of second order nonlinear singular perturbation ordinary differential equation based on the Samarskii scheme

A. I. Zadorin, S. V. Tikhovskaya

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Omsk
Full-text PDF (267 kB) Citations (7)
References:
Abstract: A boundary value problem for a second order nonlinear singular perturbation ordinary differential equation is considered. We propose the method based on the Newton and the Picard linearizations using known modified Samarskii scheme on the Shishkin mesh in the case of a linear problem. It is proved that the constructed difference schemes are of second order and uniformly convergent. To decrease the number of the arithmetical operations, we propose a two-grid method. The results of some numerical experiments are discussed.
Key words: second order nonlinear ordinary differential equation, singular perturbation, Newton method, Picard method, Samarskii scheme, Shishkin mesh, uniform convergence, two-grid algorithm.
Received: 09.11.2011
English version:
Numerical Analysis and Applications, 2013, Volume 6, Issue 1, Pages 9–23
DOI: https://doi.org/10.1134/S1995423913010023
Bibliographic databases:
Document Type: Article
UDC: 519.62
Language: Russian
Citation: A. I. Zadorin, S. V. Tikhovskaya, “Solution of second order nonlinear singular perturbation ordinary differential equation based on the Samarskii scheme”, Sib. Zh. Vychisl. Mat., 16:1 (2013), 11–25; Num. Anal. Appl., 6:1 (2013), 9–23
Citation in format AMSBIB
\Bibitem{ZadTik13}
\by A.~I.~Zadorin, S.~V.~Tikhovskaya
\paper Solution of second order nonlinear singular perturbation ordinary differential equation based on the Samarskii scheme
\jour Sib. Zh. Vychisl. Mat.
\yr 2013
\vol 16
\issue 1
\pages 11--25
\mathnet{http://mi.mathnet.ru/sjvm494}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3380103}
\elib{https://elibrary.ru/item.asp?id=20432478}
\transl
\jour Num. Anal. Appl.
\yr 2013
\vol 6
\issue 1
\pages 9--23
\crossref{https://doi.org/10.1134/S1995423913010023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874791754}
Linking options:
  • https://www.mathnet.ru/eng/sjvm494
  • https://www.mathnet.ru/eng/sjvm/v16/i1/p11
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:573
    Full-text PDF :128
    References:56
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024