Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2012, Volume 15, Number 3, Pages 329–344 (Mi sjvm484)  

This article is cited in 12 scientific papers (total in 12 papers)

Reconstruction of solenoidal part of a three-dimensional vector field by its ray transforms along straight lines, parallel to the coordinate planes

I. E. Svetovab

a Novosibirsk State University, Novosibirsk
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: The numerical solution of a vector field reconstruction problem is offered. It is assumed that a field is given in a unit ball. The approximation of the solenoidal part of the vector field is constructed from ray transforms known over all the straight lines parallel to one of the coordinate planes. Good results of reconstruction of solenoidal vector fields by the numerical simulations are proposed.
Key words: vector tomography, solenoidal field, approximation, inversion formula, ray transform, fast Fourier transform.
Received: 21.04.2011
Revised: 15.06.2011
English version:
Numerical Analysis and Applications, 2012, Volume 5, Issue 3, Pages 271–283
DOI: https://doi.org/10.1134/S1995423912030093
Bibliographic databases:
Document Type: Article
UDC: 514.8+517.983+519.6
Language: Russian
Citation: I. E. Svetov, “Reconstruction of solenoidal part of a three-dimensional vector field by its ray transforms along straight lines, parallel to the coordinate planes”, Sib. Zh. Vychisl. Mat., 15:3 (2012), 329–344; Num. Anal. Appl., 5:3 (2012), 271–283
Citation in format AMSBIB
\Bibitem{Sve12}
\by I.~E.~Svetov
\paper Reconstruction of solenoidal part of a~three-dimensional vector field by its ray transforms along straight lines, parallel to the coordinate planes
\jour Sib. Zh. Vychisl. Mat.
\yr 2012
\vol 15
\issue 3
\pages 329--344
\mathnet{http://mi.mathnet.ru/sjvm484}
\elib{https://elibrary.ru/item.asp?id=20479462}
\transl
\jour Num. Anal. Appl.
\yr 2012
\vol 5
\issue 3
\pages 271--283
\crossref{https://doi.org/10.1134/S1995423912030093}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865818941}
Linking options:
  • https://www.mathnet.ru/eng/sjvm484
  • https://www.mathnet.ru/eng/sjvm/v15/i3/p329
  • This publication is cited in the following 12 articles:
    1. Anna P. Polyakova, Ivan E. Svetov, “A numerical solution of the dynamic vector tomography problem using the truncated singular value decomposition method”, Journal of Inverse and Ill-posed Problems, 2022  crossref
    2. Derevtsov E.Yu. Maltseva V S., “Recovery of a Vector Field in the Cylinder By Its Jointly Known Nmr Images and Ray Transforms”, Sib. Electron. Math. Rep., 18 (2021), 86–103  mathnet  crossref  mathscinet  isi  scopus
    3. Mishra R.K., Sahoo S.K., “Injectivity and Range Description of Integral Moment Transforms Over M-Tensor Fields in R-N”, SIAM J. Math. Anal., 53:1 (2021), 253–278  crossref  mathscinet  isi  scopus
    4. A K Louis, S V Maltseva, A P Polyakova, T Schuster, I E Svetov, “On solving the slice-by-slice three-dimensional 2-tensor tomography problems using the approximate inverse method”, J. Phys.: Conf. Ser., 1715:1 (2021), 012036  crossref
    5. Mishra R.K., “Full Reconstruction of a Vector Field From Restricted Doppler and First Integral Moment Transforms in R-N”, J. Inverse Ill-Posed Probl., 28:2 (2020), 173–184  crossref  mathscinet  zmath  isi  scopus
    6. Polyakova A.P. Svetov I.E. Hahn B.N., “the Singular Value Decomposition of the Operators of the Dynamic Ray Transforms Acting on 2D Vector Fields”, Numerical Computations: Theory and Algorithms, Pt II, Lecture Notes in Computer Science, 11974, ed. Sergeyev Y. Kvasov D., Springer International Publishing Ag, 2020, 446–453  crossref  zmath  isi  scopus
    7. Svetov I.E., Maltseva V S., Louis A.K., “the Method of Approximate Inverse in Slice-By-Slice Vector Tomography Problems”, Numerical Computations: Theory and Algorithms, Pt II, Lecture Notes in Computer Science, 11974, eds. Sergeyev Y., Kvasov D., Springer International Publishing Ag, 2020, 487–494  crossref  zmath  isi  scopus
    8. Svetov I.E., “the Method of Approximate Inverse For the Radon Transform Operator Acting on Functions and For the Normal Radon Transform Operators Acting on Vector and Symmetric 2-Tensor Fields in R-3”, Sib. Electron. Math. Rep., 17 (2020), 1073–1087  mathnet  crossref  mathscinet  zmath  isi  scopus
    9. Maltseva V S., Svetov I.E., Polyakova A.P., “Reconstruction of a Function and Its Singular Support in a Cylinder By Tomographic Data”, Eurasian J. Math. Comput. Appl., 8:2 (2020), 86–97  crossref  isi  scopus
    10. Leweke S., Michel V., Schneider N., “Vectorial Slepian Functions on the Ball”, Numer. Funct. Anal. Optim., 39:11 (2018), 1120–1152  crossref  mathscinet  zmath  isi  scopus
    11. I. E. Svetov, S. V. Maltseva, A. P. Polyakova, “Priblizhennoe obraschenie operatorov dvumernoi vektornoi tomografii v $\mathbb{R}^2$”, Sib. elektron. matem. izv., 13 (2016), 607–623  mathnet  crossref  isi
    12. A. P. Polyakova, I. E. Svetov, “Numerical solution of reconstruction problem of a potential vector field in a ball from its normal Radon transform”, J. Appl. Industr. Math., 9:4 (2015), 547–558  mathnet  crossref  crossref  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:241
    Full-text PDF :74
    References:44
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025