Abstract:
In this paper, we present a class of A(α)A(α)-stable hybrid linear multistep methods for the numerical solution of stiff initial value problems (IVPs) in ordinary differential equations (ODEs). The method considered uses a second derivative like the Enright's second derivative linear multistep methods for stiff IVPs in ODEs.
Citation:
R. I. Okuonghae, M. N. O. Ikhile, “On the construction of high order A(α)A(α)-stable hybrid linear multistep methods for stiff IVPs in ODEs”, Sib. Zh. Vychisl. Mat., 15:3 (2012), 281–292; Num. Anal. Appl., 5:3 (2012), 231–241
\Bibitem{OkuIkh12}
\by R.~I.~Okuonghae, M.~N.~O.~Ikhile
\paper On the construction of high order $A(\alpha)$-stable hybrid linear multistep methods for stiff IVPs in ODEs
\jour Sib. Zh. Vychisl. Mat.
\yr 2012
\vol 15
\issue 3
\pages 281--292
\mathnet{http://mi.mathnet.ru/sjvm480}
\transl
\jour Num. Anal. Appl.
\yr 2012
\vol 5
\issue 3
\pages 231--241
\crossref{https://doi.org/10.1134/S1995423912030056}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865806889}
Linking options:
https://www.mathnet.ru/eng/sjvm480
https://www.mathnet.ru/eng/sjvm/v15/i3/p281
This publication is cited in the following 16 articles:
Lawrence Osa Adoghe, Ezekiel Olaoluwa Omole, Luke Azeta Ukpebor, Ola Olayemi Olanegan, Abraham Femi Olanrewaju, Samuel Olawale Oladimeji, 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG), 2024, 1
Qureshi S., Soomro A., Hincal E., “A New Family of a-Acceptable Nonlinear Methods With Fixed and Variable Stepsize Approach”, Comput. Math. Methods, 3:6 (2021), e1213
Ibrahim Z.B., Nasarudin A.A., “a Class of Hybrid Multistep Block Methods Witha-Stability For the Numerical Solution of Stiff Ordinary Differential Equations”, Mathematics, 8:6 (2020), 914
Butusov D., Tutueva A., Fedoseev P., Terentev A., Karimov A., “Semi-Implicit Multistep Extrapolation Ode Solvers”, Mathematics, 8:6 (2020), 943
Olatunji P.O., Ikhile M.N.O., “Strongly Regular General Linear Methods”, J. Sci. Comput., 82:1 (2020), 7
Ijam H.M., Ibrahim Z.B., “Diagonally Implicit Block Backward Differentiation Formula With Optimal Stability Properties For Stiff Ordinary Differential Equations”, Symmetry-Basel, 11:11 (2019), 1342
Robert I. Okuonghae, Monday Ndidi Oziegbe Ikhile, “Second derivative General Linear Method in Nordsieck form”, J. Numer. Anal. Approx. Theory, 48:1 (2019), 62
Adeyeye O., Omar Z., “New Generalized Algorithm For Developing K-Step Higher Derivative Block Methods For Solving Higher Order Ordinary Differential Equations”, J. Math. Fundam. Sci., 50:1 (2018), 40–58
Okuonghae R.I., Ikhile M.N.O., “Stiffly Stable Second Derivative Linear Multistep Methods With Two Hybrid Points”, Numer. Anal. Appl., 8:3 (2015), 248–259
R. I. Okuonghae, “Variable order explicit second derivative general linear methods”, Comp. Appl. Math., 33:1 (2014), 243
R. I. Okuonghae, “A-Stable High Order Hybrid Linear Multistep Methods for Stiff Problems”, Journal of Algorithms & Computational Technology, 8:4 (2014), 441
R. I. Okuonghae, M. N. O. Ikhile, “L(α)L(α)-stable variable order implicit second derivative Runge Kutta methods”, Num. Anal. Appl., 7:4 (2014), 314–327
R. I. Okuonghae, M. N. O. Ikhile, “Second derivative general linear methods”, Numer Algor, 67:3 (2014), 637
R. I. Okuonghae, M. N. O. Ikhile, “A family of highly stable second derivative block methods for stiff IVPs in ODEs”, Num. Anal. Appl., 7:1 (2014), 57–69
R. I. Okuonghae, “A class of A(α)A(α)-stable numerical methods for stiff problems in ordinary differential equations”, Num. Anal. Appl., 6:4 (2013), 298–313