Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2012, Volume 15, Number 3, Pages 281–292 (Mi sjvm480)  

This article is cited in 16 scientific papers (total in 16 papers)

On the construction of high order A(α)A(α)-stable hybrid linear multistep methods for stiff IVPs in ODEs

R. I. Okuonghae, M. N. O. Ikhile

Department of Mathematics, University of Benin, Benin City, Edo state, Nigeria
References:
Abstract: In this paper, we present a class of A(α)A(α)-stable hybrid linear multistep methods for the numerical solution of stiff initial value problems (IVPs) in ordinary differential equations (ODEs). The method considered uses a second derivative like the Enright's second derivative linear multistep methods for stiff IVPs in ODEs.
Key words: hybrid methods, continuous methods, collocation, interpolation, boundary locus, A(α)A(α)-stability.
Received: 11.01.2011
Revised: 24.05.2011
English version:
Numerical Analysis and Applications, 2012, Volume 5, Issue 3, Pages 231–241
DOI: https://doi.org/10.1134/S1995423912030056
Bibliographic databases:
Document Type: Article
MSC: 65L05, 65L06
Language: Russian
Citation: R. I. Okuonghae, M. N. O. Ikhile, “On the construction of high order A(α)A(α)-stable hybrid linear multistep methods for stiff IVPs in ODEs”, Sib. Zh. Vychisl. Mat., 15:3 (2012), 281–292; Num. Anal. Appl., 5:3 (2012), 231–241
Citation in format AMSBIB
\Bibitem{OkuIkh12}
\by R.~I.~Okuonghae, M.~N.~O.~Ikhile
\paper On the construction of high order $A(\alpha)$-stable hybrid linear multistep methods for stiff IVPs in ODEs
\jour Sib. Zh. Vychisl. Mat.
\yr 2012
\vol 15
\issue 3
\pages 281--292
\mathnet{http://mi.mathnet.ru/sjvm480}
\transl
\jour Num. Anal. Appl.
\yr 2012
\vol 5
\issue 3
\pages 231--241
\crossref{https://doi.org/10.1134/S1995423912030056}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865806889}
Linking options:
  • https://www.mathnet.ru/eng/sjvm480
  • https://www.mathnet.ru/eng/sjvm/v15/i3/p281
  • This publication is cited in the following 16 articles:
    1. Lawrence Osa Adoghe, Ezekiel Olaoluwa Omole, Luke Azeta Ukpebor, Ola Olayemi Olanegan, Abraham Femi Olanrewaju, Samuel Olawale Oladimeji, 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG), 2024, 1  crossref
    2. Qureshi S., Soomro A., Hincal E., “A New Family of a-Acceptable Nonlinear Methods With Fixed and Variable Stepsize Approach”, Comput. Math. Methods, 3:6 (2021), e1213  crossref  mathscinet  isi  scopus
    3. Ibrahim Z.B., Nasarudin A.A., “a Class of Hybrid Multistep Block Methods Witha-Stability For the Numerical Solution of Stiff Ordinary Differential Equations”, Mathematics, 8:6 (2020), 914  crossref  isi  scopus
    4. Butusov D., Tutueva A., Fedoseev P., Terentev A., Karimov A., “Semi-Implicit Multistep Extrapolation Ode Solvers”, Mathematics, 8:6 (2020), 943  crossref  isi  scopus
    5. Olatunji P.O., Ikhile M.N.O., “Strongly Regular General Linear Methods”, J. Sci. Comput., 82:1 (2020), 7  crossref  mathscinet  zmath  isi  scopus
    6. Ijam H.M., Ibrahim Z.B., “Diagonally Implicit Block Backward Differentiation Formula With Optimal Stability Properties For Stiff Ordinary Differential Equations”, Symmetry-Basel, 11:11 (2019), 1342  crossref  isi  scopus
    7. Robert I. Okuonghae, Monday Ndidi Oziegbe Ikhile, “Second derivative General Linear Method in Nordsieck form”, J. Numer. Anal. Approx. Theory, 48:1 (2019), 62  crossref
    8. Adeyeye O., Omar Z., “New Generalized Algorithm For Developing K-Step Higher Derivative Block Methods For Solving Higher Order Ordinary Differential Equations”, J. Math. Fundam. Sci., 50:1 (2018), 40–58  crossref  mathscinet  isi  scopus
    9. Okuonghae R.I., Ikhile M.N.O., “L(Alpha)-Stable Multi-Derivative Glm”, J. Algorithms Comput. Technol., 9:4 (2015), 339–376  crossref  isi
    10. Okuonghae R.I., Ikhile M.N.O., “Stiffly Stable Second Derivative Linear Multistep Methods With Two Hybrid Points”, Numer. Anal. Appl., 8:3 (2015), 248–259  crossref  isi
    11. R. I. Okuonghae, “Variable order explicit second derivative general linear methods”, Comp. Appl. Math., 33:1 (2014), 243  crossref
    12. R. I. Okuonghae, “A-Stable High Order Hybrid Linear Multistep Methods for Stiff Problems”, Journal of Algorithms & Computational Technology, 8:4 (2014), 441  crossref
    13. R. I. Okuonghae, M. N. O. Ikhile, “L(α)L(α)-stable variable order implicit second derivative Runge Kutta methods”, Num. Anal. Appl., 7:4 (2014), 314–327  mathnet  mathnet  crossref
    14. R. I. Okuonghae, M. N. O. Ikhile, “Second derivative general linear methods”, Numer Algor, 67:3 (2014), 637  crossref
    15. R. I. Okuonghae, M. N. O. Ikhile, “A family of highly stable second derivative block methods for stiff IVPs in ODEs”, Num. Anal. Appl., 7:1 (2014), 57–69  mathnet  mathnet  crossref  scopus
    16. R. I. Okuonghae, “A class of A(α)A(α)-stable numerical methods for stiff problems in ordinary differential equations”, Num. Anal. Appl., 6:4 (2013), 298–313  mathnet  mathnet  crossref  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:286
    Full-text PDF :132
    References:47
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025