Abstract:
In this article, elastic wave propagation in a homogeneous isotropic elastic medium with a rigid boundary is considered. A method based on the decoupling of pressure and shear waves via the use of scalar potentials is proposed. This method is adapted to a finite element discretization, which is discussed. A stable, energy preserving numerical scheme is presented, as well as 2D numerical results.
Citation:
A. Burel, S. Impériale, P. Joly, “Solving the homogeneous isotropic linear elastodynamics equations using potentials and finite elements. The case of the rigid boundary condition”, Sib. Zh. Vychisl. Mat., 15:2 (2012), 165–174; Num. Anal. Appl., 5:2 (2012), 136–143
\Bibitem{BurImpJol12}
\by A.~Burel, S.~Imp\'eriale, P.~Joly
\paper Solving the homogeneous isotropic linear elastodynamics equations using potentials and finite elements. The case of the rigid boundary condition
\jour Sib. Zh. Vychisl. Mat.
\yr 2012
\vol 15
\issue 2
\pages 165--174
\mathnet{http://mi.mathnet.ru/sjvm467}
\transl
\jour Num. Anal. Appl.
\yr 2012
\vol 5
\issue 2
\pages 136--143
\crossref{https://doi.org/10.1134/S1995423912020061}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862127600}
Linking options:
https://www.mathnet.ru/eng/sjvm467
https://www.mathnet.ru/eng/sjvm/v15/i2/p165
This publication is cited in the following 13 articles:
Silvia Falletta, Matteo Ferrari, Letizia Scuderi, “A virtual element method for the solution of 2D time-harmonic elastic wave equations via scalar potentials”, Journal of Computational and Applied Mathematics, 441 (2024), 115625
S. Falletta, G. Monegato, L. Scuderi, INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: ICNAAM2022, 3094, INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: ICNAAM2022, 2024, 220005
Can Ulaş Doğruer, Can Barış Toprak, Bora Y{\i}ld{\i}r{\i}m, “Advancing Modal Analysis of Mechanical Linkages via Differential Algebraic Equations”, Politeknik Dergisi, 28:1 (2024), 159
J. Albella, R. Rodríguez, P. Venegas, “Numerical approximation of a potentials formulation for the elasticity vibration problem”, Computers & Mathematics with Applications, 137 (2023), 61
Silvia Falletta, Giovanni Monegato, Letizia Scuderi, “An overview on a time discrete convolution—space collocation BEM for 2D exterior wave propagation problems”, Ann Univ Ferrara, 68:2 (2022), 311
S. Falletta, G. Monegato, L. Scuderi, “Two FEM-BEM methods for the numerical solution of 2D transient elastodynamics problems in unbounded domains”, Computers & Mathematics with Applications, 114 (2022), 132
Akram Beni Hamad, Geoffrey Beck, Sébastien Imperiale, Patrick Joly, “An Efficient Numerical Method for Time Domain Electromagnetic Wave Propagation in Co-axial Cables”, Computational Methods in Applied Mathematics, 22:4 (2022), 861
Alessandra Aimi, Giulia Di Credico, Mauro Diligenti, Chiara Guardasoni, “Highly accurate quadrature schemes for singular integrals in energetic BEM applied to elastodynamics”, Journal of Computational and Applied Mathematics, 410 (2022), 114186
Albella Martinez J., Imperiale S., Joly P., Rodriguez J., “Numerical Analysis of a Method For Solving 2D Linear Isotropic Elastodynamics With Traction Free Boundary Condition Using Potentials and Finite Elements”, Math. Comput., 90:330 (2021), 1589–1636
Falletta S., Monegato G., Scuderi L., “Two Boundary Integral Equation Methods For Linear Elastodynamics Problems on Unbounded Domains”, Comput. Math. Appl., 78:12 (2019), 3841–3861
Albella Martinez J., Imperiale S., Joly P., Rodriguez J., “Solving 2D Linear Isotropic Elastodynamics By Means of Scalar Potentials: a New Challenge For Finite Elements”, J. Sci. Comput., 77:3, SI (2018), 1832–1873
R. Kolman, S. S. Cho, K. C. Park, “Efficient implementation of an explicit partitioned shear and longitudinal wave propagation algorithm”, Int. J. Numer. Methods Eng., 107:7 (2016), 543–579
Chabassier J., Imperiale S., “Stability and Dispersion Analysis of Improved Time Discretization for Simply Supported Prestressed Timoshenko Systems. Application to the Stiff Piano String”, Wave Motion, 50:3 (2013), 456–480