Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2012, Volume 15, Number 2, Pages 119–130 (Mi sjvm462)  

This article is cited in 5 scientific papers (total in 5 papers)

Hierarchical approach to seismic full waveform inversion

A. Asnaasharia, R. Brossiera, С. Castellanosb, B. Dupuya, V. Etienneb, Y. Gholamib, G. Huab, L. Métivierba, S. Opertob, D. Pageotb, V. Prieuxb, A. Ribodettib, A. Roquesa, J. Virieuxa

a ISTerre, Université de Grenoble I — CNRS, Universite Joseph Fourier — Grenoble I, Member of Institut Universitaire de France, IUF, Laboratory in Earth Sciences: ISTerre, Grenoble, France
b Géoazur — Université de Nice Sophia-Antipolis — CNRS
References:
Abstract: Full waveform inversion (FWI) of seismic traces recorded at the free surface allows the reconstruction of the physical parameters structure on the underlying medium. For such reconstruction, an optimization problem is defined where synthetic traces, obtained through numerical techniques as finite-difference or finite-element methods in a given model of the subsurface, should match the observed traces. The number of data samples is routinely around 1 billion for 2D problems and 1 trillion for 3D problems, while the number of parameters ranges from 1 million to 10 million degrees of freedom. Moreover, if one defines the mismatch as the standard least-squares norm between values sampled in time/frequency and space, the misfit function has a significant number of secondary minima related to the ill-posedness and non-linearity of the inversion problem linked to the so-called cycle skipping.
Taking into account the size of the problem, we consider a local linearized method where the gradient is computed using the adjoint formulation of the seismic wave propagation problem. Starting for an initial model, we consider a quasi-Newton method which allows us to formulate the reconstruction of various parameters, such as P and S wave velocities, density, or attenuation factors. A hierarchical strategy is based on an incremental increase in the data complexity starting from low-frequency content to high-frequency content, from initial wavelets to later phases in the data space, from narrow azimuths to wide azimuths, and from simple observables to more complex ones. Different synthetic examples of realistic structures illustrate the efficiency of this strategy based on data manipulation.
This strategy is related to the data space, and has to be inserted into a more global framework, where we could improve significantly the probability of convergence to the global minimum. When considering the model space, we may rely on the construction of the initial model or add constraints, such as smoothness of the searched model and/or prior information collected by other means. An alternative strategy concerns building the objective function, and various possibilities must be considered which may increase the linearity of the inversion procedure.
Key words: seismic traces, optimization problem, cycle skipping, quasi-Newton method.
Received: 06.10.2011
English version:
Numerical Analysis and Applications, 2012, Volume 5, Issue 2, Pages 99–108
DOI: https://doi.org/10.1134/S1995423912020012
Bibliographic databases:
Document Type: Article
MSC: 65C20, 68U20
Language: Russian
Citation: A. Asnaashari, R. Brossier, С. Castellanos, B. Dupuy, V. Etienne, Y. Gholami, G. Hu, L. Métivier, S. Operto, D. Pageot, V. Prieux, A. Ribodetti, A. Roques, J. Virieux, “Hierarchical approach to seismic full waveform inversion”, Sib. Zh. Vychisl. Mat., 15:2 (2012), 119–130; Num. Anal. Appl., 5:2 (2012), 99–108
Citation in format AMSBIB
\Bibitem{AsnBroCas12}
\by A.~Asnaashari, R.~Brossier, С.~Castellanos, B.~Dupuy, V.~Etienne, Y.~Gholami, G.~Hu, L.~M\'etivier, S.~Operto, D.~Pageot, V.~Prieux, A.~Ribodetti, A.~Roques, J.~Virieux
\paper Hierarchical approach to seismic full waveform inversion
\jour Sib. Zh. Vychisl. Mat.
\yr 2012
\vol 15
\issue 2
\pages 119--130
\mathnet{http://mi.mathnet.ru/sjvm462}
\transl
\jour Num. Anal. Appl.
\yr 2012
\vol 5
\issue 2
\pages 99--108
\crossref{https://doi.org/10.1134/S1995423912020012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862152720}
Linking options:
  • https://www.mathnet.ru/eng/sjvm462
  • https://www.mathnet.ru/eng/sjvm/v15/i2/p119
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024