Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2012, Volume 15, Number 1, Pages 83–100 (Mi sjvm460)  

This article is cited in 25 scientific papers (total in 25 papers)

A posteriori accuracy estimations of solutions of ill-posed inverse problems and extra-optimal regularizing algorithms for their solution

A. S. Leonov

Moscow Engineering Physics Institute (State University), Moscow
References:
Abstract: A new scheme of a posteriori accuracy estimation for approximate solutions of ill-posed inverse problems is presented along with an algorithm of calculating this estimation. A new notion of extra-optimal regularizing algorithm is introduced as a method for solving ill-posed inverse problems having optimal in order a posteriori accuracy estimation. Sufficient conditions of extra-optimality are formulated and an example of extra-optimal regularizing algorithm is given. The developed theory is illustrated by numerical experiments.
Key words: ill-posed problems, regularizing algorithms, a posteriori accuracy estimation, extra-optimal algorithm.
Received: 15.02.2011
English version:
Numerical Analysis and Applications, 2012, Volume 5, Issue 1, Pages 68–83
DOI: https://doi.org/10.1134/S1995423912010077
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: A. S. Leonov, “A posteriori accuracy estimations of solutions of ill-posed inverse problems and extra-optimal regularizing algorithms for their solution”, Sib. Zh. Vychisl. Mat., 15:1 (2012), 83–100; Num. Anal. Appl., 5:1 (2012), 68–83
Citation in format AMSBIB
\Bibitem{Leo12}
\by A.~S.~Leonov
\paper A posteriori accuracy estimations of solutions of ill-posed inverse problems and extra-optimal regularizing algorithms for their solution
\jour Sib. Zh. Vychisl. Mat.
\yr 2012
\vol 15
\issue 1
\pages 83--100
\mathnet{http://mi.mathnet.ru/sjvm460}
\elib{https://elibrary.ru/item.asp?id=17979185}
\transl
\jour Num. Anal. Appl.
\yr 2012
\vol 5
\issue 1
\pages 68--83
\crossref{https://doi.org/10.1134/S1995423912010077}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84857860648}
Linking options:
  • https://www.mathnet.ru/eng/sjvm460
  • https://www.mathnet.ru/eng/sjvm/v15/i1/p83
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:828
    Full-text PDF :299
    References:88
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024