Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2011, Volume 14, Number 4, Pages 425–442 (Mi sjvm452)  

This article is cited in 15 scientific papers (total in 15 papers)

Error estimates for triangular and tetrahedral finite elements in combination with a trajectory approximation of the first derivatives for advection-diffusion equations

H. Chena, Q. Linb, V. V. Shaidurovcd, J. Zhoue

a School of Mathematical Sciences, Xiamen University, Xiamen, China
b LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
c Institute of Computational Modelling, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk
d School of Mathematics and Systems Science, Beihang University, Beijing, China
e School of Sciences, Hebei University of Technology, Tianjin, China
References:
Abstract: In this paper, a modified method of characteristics in combination with integral identities of triangular and tetrahedral linear elements is used to prove a uniform optimal-order error estimate which depends only on the initial data and right-hand side, but not on a scaling parameter ε, for multi-dimensional time-dependent advection-diffusion equations.
Key words: modified method of characteristics, triangular linear element, tetrahedral linear element, integral identities, uniform error estimate.
Received: 21.10.2010
Revised: 03.03.2011
English version:
Numerical Analysis and Applications, 2011, Volume 4, Issue 4, Pages 345–362
DOI: https://doi.org/10.1134/S1995423911040070
Bibliographic databases:
Document Type: Article
UDC: 556.013
Language: Russian
Citation: H. Chen, Q. Lin, V. V. Shaidurov, J. Zhou, “Error estimates for triangular and tetrahedral finite elements in combination with a trajectory approximation of the first derivatives for advection-diffusion equations”, Sib. Zh. Vychisl. Mat., 14:4 (2011), 425–442; Num. Anal. Appl., 4:4 (2011), 345–362
Citation in format AMSBIB
\Bibitem{CheLinSha11}
\by H.~Chen, Q.~Lin, V.~V.~Shaidurov, J.~Zhou
\paper Error estimates for triangular and tetrahedral finite elements in combination with a~trajectory approximation of the first derivatives for advection-diffusion equations
\jour Sib. Zh. Vychisl. Mat.
\yr 2011
\vol 14
\issue 4
\pages 425--442
\mathnet{http://mi.mathnet.ru/sjvm452}
\transl
\jour Num. Anal. Appl.
\yr 2011
\vol 4
\issue 4
\pages 345--362
\crossref{https://doi.org/10.1134/S1995423911040070}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84155189740}
Linking options:
  • https://www.mathnet.ru/eng/sjvm452
  • https://www.mathnet.ru/eng/sjvm/v14/i4/p425
  • This publication is cited in the following 15 articles:
    1. Shaidurov V.V., Vyatkin A.V., Kuchunova E.V., “Semi-Lagrangian Difference Approximations With Different Stability Requirements”, Russ. J. Numer. Anal. Math. Model, 33:2 (2018), 123–135  crossref  mathscinet  zmath  isi  scopus
    2. V. Shaydurov, A. Efremov, L. Gileva, AIP Conference Proceedings, 2025, 2018, 020004  crossref
    3. E. Dementyeva, E. Karepova, V. Shaidurov, “The semi-Lagrangian method for the Navier–Stokes problem for an incompressible fluid”, Application of Mathematics in Technical and Natural Sciences, AIP Conf. Proc., 1895, ed. M. Todorov, Amer. Inst. Phys., 2017, UNSP 110001-1  crossref  isi  scopus
    4. V. Shaydurov, G. Shchepanovskaya, M. Yakubovich, “A mathematical model and a numerical algorithm for an asteroid-comet body in the Earth's atmosphere”, Numerical Analysis and Its Applications (NAA 2016), Lecture Notes in Computer Science, 10187, eds. I. Dimov, I. Farago, L. Vulkov, Springler, 2017, 119–131  crossref  mathscinet  zmath  isi  scopus
    5. V. Shaydurov, G. Shchepanovskaya, M. Yakubovich, “Mathematical model and numerical algorithm for aerodynamical flow”, Application of Mathematics in Technical and Natural Sciences (AMITANS'16), AIP Conf. Proc., 1773, ed. M. Todorov, Amer. Inst. Phys., 2016, 020006  crossref  isi
    6. E. Dementyeva, E. Karepova, V. Shaidurov, “The semi-Lagrangian approximation in the finite element method for the Navier–Stokes equations”, Application of Mathematics in Technical and Natural Sciences (AMITANS'15), AIP Conf. Proc., 1684, ed. M. Todorov, Amer. Inst. Phys., 2015, 090009  crossref  isi  scopus
    7. A. Efremov, E. Karepova, A. Vyatkin, “Some features of the CUDA implementation of the semi-Lagrangian method for the advection problem”, Application of Mathematics in Technical and Natural Sciences (AMITANS'15), AIP Conf. Proc., 1684, ed. M. Todorov, Amer. Inst. Phys., 2015, 090003  crossref  isi  scopus
    8. V. Shaydurov, T. Liu, G. Shchepanovskaya, M. Yakubovich, “A semi-Lagrangian approximation in the Navier–Stokes equations for the gas flow around a wedge”, Application of Mathematics in Technical and Natural Sciences (AMITANS'15), AIP Conf. Proc., 1684, ed. M. Todorov, Amer. Inst. Phys., 2015, 090011  crossref  isi  scopus
    9. V. Shaydurov, G. Shchepanovskaya, M. Yakubovich, “A mathematical model of the passage of an asteroid-comet body through the Earth's atmosphere”, Application of Mathematics in Technical and Natural Sciences (AMITANS'15), AIP Conf. Proc., 1684, ed. M. Todorov, Amer. Inst. Phys., 2015, 020003  crossref  isi  scopus
    10. V. Shaidurov, G. Shchepanovskaya, M. Yakubovich, “A semi-Lagrangian approach in the finite element method for the Navier–Stokes equations of viscous heat-conducting gas”, Application of Mathematics in Technical and Natural Sciences (AMITANS `14), AIP Conf. Proc., 1629, ed. M. Todorov, Amer. Inst. Phys., 2014, 19–31  crossref  isi  scopus
    11. E. Andreeva, A. Vyatkin, V. Shaidurov, “The semi-Lagrangian approximation in the finite element method for Navier–Stokes equations for a viscous incompressible fluid”, International Conference on Analysis and Applied Mathematics (ICAAM 2014), AIP Conf. Proc., 1611, eds. A. Ashyralyev, E. Malkowsky, Amer. Inst. Phys., 2014, 3–11  crossref  isi  scopus
    12. Alexander Efremov, Eugeniya Karepova, Vladimir Shaydurov, Alexander Vyatkin, “A Computational Realization of a Semi-Lagrangian Method for Solving the Advection Equation”, Journal of Applied Mathematics, 2014 (2014), 1  crossref
    13. H. Chen, Q. Lin, J. Zhou, H. Wang, “Uniform error estimates for triangular finite element solutions of advection-diffusion equations”, Adv. Comput. Math., 38:1 (2013), 83–100  crossref  mathscinet  zmath  isi  scopus
    14. Vladimir V. Shaydurov, Galina I. Shchepanovskaya, Maxim V. Yakubovich, Lecture Notes in Computer Science, 8236, Numerical Analysis and Its Applications, 2013, 122  crossref
    15. V. V. Shaidurov, G. I. Shchepanovskaya, V. M. Yakubovich, “Numerical simulation of supersonic flows in a channel”, Russ. J. Numer. Anal. Math. Model, 27:6 (2012), 585–601  crossref  mathscinet  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:421
    Full-text PDF :95
    References:61
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025