This article is cited in 15 scientific papers (total in 15 papers)
Error estimates for triangular and tetrahedral finite elements in combination with a trajectory approximation of the first derivatives for advection-diffusion equations
Abstract:
In this paper, a modified method of characteristics in combination with integral identities of triangular and tetrahedral linear elements is used to prove a uniform optimal-order error estimate which depends only on the initial data and right-hand side, but not on a scaling parameter ε, for multi-dimensional time-dependent advection-diffusion equations.
Key words:
modified method of characteristics, triangular linear element, tetrahedral linear element, integral identities, uniform error estimate.
Citation:
H. Chen, Q. Lin, V. V. Shaidurov, J. Zhou, “Error estimates for triangular and tetrahedral finite elements in combination with a trajectory approximation of the first derivatives for advection-diffusion equations”, Sib. Zh. Vychisl. Mat., 14:4 (2011), 425–442; Num. Anal. Appl., 4:4 (2011), 345–362
\Bibitem{CheLinSha11}
\by H.~Chen, Q.~Lin, V.~V.~Shaidurov, J.~Zhou
\paper Error estimates for triangular and tetrahedral finite elements in combination with a~trajectory approximation of the first derivatives for advection-diffusion equations
\jour Sib. Zh. Vychisl. Mat.
\yr 2011
\vol 14
\issue 4
\pages 425--442
\mathnet{http://mi.mathnet.ru/sjvm452}
\transl
\jour Num. Anal. Appl.
\yr 2011
\vol 4
\issue 4
\pages 345--362
\crossref{https://doi.org/10.1134/S1995423911040070}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84155189740}
Linking options:
https://www.mathnet.ru/eng/sjvm452
https://www.mathnet.ru/eng/sjvm/v14/i4/p425
This publication is cited in the following 15 articles:
Shaidurov V.V., Vyatkin A.V., Kuchunova E.V., “Semi-Lagrangian Difference Approximations With Different Stability Requirements”, Russ. J. Numer. Anal. Math. Model, 33:2 (2018), 123–135
V. Shaydurov, A. Efremov, L. Gileva, AIP Conference Proceedings, 2025, 2018, 020004
E. Dementyeva, E. Karepova, V. Shaidurov, “The semi-Lagrangian method for the Navier–Stokes problem for an incompressible fluid”, Application of Mathematics in Technical and Natural Sciences, AIP Conf. Proc., 1895, ed. M. Todorov, Amer. Inst. Phys., 2017, UNSP 110001-1
V. Shaydurov, G. Shchepanovskaya, M. Yakubovich, “A mathematical model and a numerical algorithm for an asteroid-comet body in the Earth's atmosphere”, Numerical Analysis and Its Applications (NAA 2016), Lecture Notes in Computer Science, 10187, eds. I. Dimov, I. Farago, L. Vulkov, Springler, 2017, 119–131
V. Shaydurov, G. Shchepanovskaya, M. Yakubovich, “Mathematical model and numerical algorithm for aerodynamical flow”, Application of Mathematics in Technical and Natural Sciences (AMITANS'16), AIP Conf. Proc., 1773, ed. M. Todorov, Amer. Inst. Phys., 2016, 020006
E. Dementyeva, E. Karepova, V. Shaidurov, “The semi-Lagrangian approximation in the finite element method for the Navier–Stokes equations”, Application of Mathematics in Technical and Natural Sciences (AMITANS'15), AIP Conf. Proc., 1684, ed. M. Todorov, Amer. Inst. Phys., 2015, 090009
A. Efremov, E. Karepova, A. Vyatkin, “Some features of the CUDA implementation of the semi-Lagrangian method for the advection problem”, Application of Mathematics in Technical and Natural Sciences (AMITANS'15), AIP Conf. Proc., 1684, ed. M. Todorov, Amer. Inst. Phys., 2015, 090003
V. Shaydurov, T. Liu, G. Shchepanovskaya, M. Yakubovich, “A semi-Lagrangian approximation in the Navier–Stokes equations for the gas flow around a wedge”, Application of Mathematics in Technical and Natural Sciences (AMITANS'15), AIP Conf. Proc., 1684, ed. M. Todorov, Amer. Inst. Phys., 2015, 090011
V. Shaydurov, G. Shchepanovskaya, M. Yakubovich, “A mathematical model of the passage of an asteroid-comet body through the Earth's atmosphere”, Application of Mathematics in Technical and Natural Sciences (AMITANS'15), AIP Conf. Proc., 1684, ed. M. Todorov, Amer. Inst. Phys., 2015, 020003
V. Shaidurov, G. Shchepanovskaya, M. Yakubovich, “A semi-Lagrangian approach in the finite element method for the Navier–Stokes equations of viscous heat-conducting gas”, Application of Mathematics in Technical and Natural Sciences (AMITANS `14), AIP Conf. Proc., 1629, ed. M. Todorov, Amer. Inst. Phys., 2014, 19–31
E. Andreeva, A. Vyatkin, V. Shaidurov, “The semi-Lagrangian approximation in the finite element method for Navier–Stokes equations for a viscous incompressible fluid”, International Conference on Analysis and Applied Mathematics (ICAAM 2014), AIP Conf. Proc., 1611, eds. A. Ashyralyev, E. Malkowsky, Amer. Inst. Phys., 2014, 3–11
Alexander Efremov, Eugeniya Karepova, Vladimir Shaydurov, Alexander Vyatkin, “A Computational Realization of a Semi-Lagrangian Method for Solving the Advection Equation”, Journal of Applied Mathematics, 2014 (2014), 1
H. Chen, Q. Lin, J. Zhou, H. Wang, “Uniform error estimates for triangular finite element solutions of advection-diffusion equations”, Adv. Comput. Math., 38:1 (2013), 83–100
Vladimir V. Shaydurov, Galina I. Shchepanovskaya, Maxim V. Yakubovich, Lecture Notes in Computer Science, 8236, Numerical Analysis and Its Applications, 2013, 122
V. V. Shaidurov, G. I. Shchepanovskaya, V. M. Yakubovich, “Numerical simulation of supersonic flows in a channel”, Russ. J. Numer. Anal. Math. Model, 27:6 (2012), 585–601