Abstract:
A variational problem of equilibrium of an elastic Timoshenko-type plate in a domain with a slit is considered. A nonpenetration boundary condition in the form of an inequality is specified on the edges of the slit. A penalized equation and an iterative linear equation in integral and differential forms are constructed. Some results on solution convergence and an error estimate are obtained.
Citation:
N. P. Lazarev, “An iterative penalty method for a nonlinear problem of equilibrium of a Timoshenko-type plate with a crack”, Sib. Zh. Vychisl. Mat., 14:4 (2011), 397–408; Num. Anal. Appl., 4:4 (2011), 309–318
\Bibitem{Laz11}
\by N.~P.~Lazarev
\paper An iterative penalty method for a~nonlinear problem of equilibrium of a~Timoshenko-type plate with a~crack
\jour Sib. Zh. Vychisl. Mat.
\yr 2011
\vol 14
\issue 4
\pages 397--408
\mathnet{http://mi.mathnet.ru/sjvm449}
\transl
\jour Num. Anal. Appl.
\yr 2011
\vol 4
\issue 4
\pages 309--318
\crossref{https://doi.org/10.1134/S1995423911040045}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84155187184}
Linking options:
https://www.mathnet.ru/eng/sjvm449
https://www.mathnet.ru/eng/sjvm/v14/i4/p397
This publication is cited in the following 14 articles:
Victor A. Kovtunenko, Nyurgun P. Lazarev, “Variational inequality for a Timoshenko plate contacting at the boundary with an inclined obstacle”, Phil. Trans. R. Soc. A., 382:2277 (2024)
Lazarev N., Romanova N., Semenova G., “Optimal Location of a Thin Rigid Inclusion For a Problem Describing Equilibrium of a Composite Timoshenko Plate With a Crack”, J. Inequal. Appl., 2020:1 (2020), 29
Lazarev N., Neustroeva N., “Optimal Control of Rigidity Parameter of Elastic Inclusions in Composite Plate With a Crack”, Mathematics and Computing (Icmc 2018), Springer Proceedings in Mathematics & Statistics, 253, eds. Ghosh D., Giri D., Mohapatra R., Sakurai K., Savas E., Som T., Springer, 2018, 67–77
Lazarev N.P., Das S., Grigoryev M.P., “Optimal Control of a Thin Rigid Stiffener For a Model Describing Equilibrium of a Timoshenko Plate With a Crack”, Sib. Electron. Math. Rep., 15 (2018), 1485–1497
N. P. Lazarev, H. Itou, N. V. Neustroeva, “Fictitious domain method for an equilibrium problem of the Timoshenko-type plate with a crack crossing the external boundary at zero angle”, Jpn. J. Ind. Appl. Math., 33:1 (2016), 63–80
N. Lazarev, T. Popova, G. Semenova, “Existence of an optimal size of a rigid inclusion for an equilibrium problem of a Timoshenko plate with Signorini-type boundary condition”, J. Inequal. Appl., 2016, 18
N. Lazarev, “Shape sensitivity analysis of the energy integrals for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, Z. Angew. Math. Phys., 66:4 (2015), 2025–2040
N. P. Lazarev, “Zadacha o ravnovesii plastiny Timoshenko, soderzhaschei treschinu vdol tonkogo zhestkogo vklyucheniya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2014, no. 1, 32–45
N. P. Lazarev, E. M. Rudoy, “Shape sensitivity analysis of Timoshenko's plate with a crack under the nonpenetration condition”, ZAMM-Z. Angew. Math. Mech., 94:9 (2014), 730–739
N. P. Lazarev, “Equilibrium problem for a Timoshenko plate with an oblique crack”, J. Appl. Mech. Tech. Phys., 54:4 (2013), 662–671
N. P. Lazarev, “Problem of equilibrium of the Timoshenko plate containing a crack on the boundary of an elastic inclusion with an infinite shear rigidity”, J. Appl. Mech. Tech. Phys., 54:2 (2013), 322–330
N. P. Lazarev, “Fictitious domain method in the equilibrium problem for a Timoshenko-type plate contacting with a rigid obstacle”, J. Math. Sci., 203:4 (2014), 527–539
N. P. Lazarev, “Optimalnoe upravlenie vneshnimi nagruzkami v zadache o ravnovesii uprugoi plastiny timoshenko s usloviem nepronikaniya na treschine”, Matematicheskie zametki YaGU, 18:2 (2011), 99–112
N. P. Lazarev, “Extreme Crack Shapes in a Plate Timoshenko Model”, J. Math. Sci., 195:6 (2013), 815–826