Abstract:
This paper is aimed at studying finite element discretization for a class of quadratic boundary optimal control problems governed by nonlinear elliptic equations. We derive a posteriori error estimates for the coupled state and control approximation. Such estimates can be used to construct a reliable adaptive finite element approximation for the boundary optimal control problem. Finally, we present a numerical example to confirm our theoretical results.
Key words:
nonlinear boundary optimal control problem, finite element methods, a posteriori error estimates.
\Bibitem{Zul11}
\by Z.~Lu
\paper A~posteriori error estimates of finite element methods for nonlinear quadratic boundary optimal control problem
\jour Sib. Zh. Vychisl. Mat.
\yr 2011
\vol 14
\issue 3
\pages 261--276
\mathnet{http://mi.mathnet.ru/sjvm440}
\transl
\jour Num. Anal. Appl.
\yr 2011
\vol 4
\issue 3
\pages 210--222
\crossref{https://doi.org/10.1134/S1995423911030037}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79960829855}
Linking options:
https://www.mathnet.ru/eng/sjvm440
https://www.mathnet.ru/eng/sjvm/v14/i3/p261
This publication is cited in the following 5 articles:
Lu Z., “a Posteriori Error Estimates of Fully Discrete Finite-Element Schemes For Nonlinear Parabolic Integro-Differential Optimal Control Problems”, Adv. Differ. Equ., 2014, 15
Z. Lu, D. Liu, “A posteriori error estimates for boundary parabolic optimal control problems”, Lobachevskii J Math, 35:2 (2014), 92
Lu Z., “Adaptive Semidiscrete Finite Element Methods for Semilinear Parabolic Integrodifferential Optimal Control Problem with Control Constraint”, J. Appl. Math., 2013, 302935
Lu Z., “Adaptive Fully-Discrete Finite Element Methods for Nonlinear Quadratic Parabolic Boundary Optimal Control”, Bound. Value Probl., 2013, 72, 1–18
Yan Ningning, 2007 Chinese Control Conference, 2006, 621