Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2011, Volume 14, Number 2, Pages 141–153 (Mi sjvm432)  

This article is cited in 3 scientific papers (total in 3 papers)

Minimizing the variance of estimate of mathematical expectation of a diffusion process functional by parametric transformation of the parabolic boundary value problem

S. A. Gusev

Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (246 kB) Citations (3)
References:
Abstract: This paper is associated with finding the ways of reducing the variance of the estimate of mathematical expectation of the functional of a diffusion process moving in a domain with an absorbing boundary. The estimate of mathematical expectation of the functional is obtained using a numerical solution of stochastic differential equations (SDE's) by the Euler method. A formula of the limiting variance at decreasing the integration step in the Euler method is obtained. A method of reducing the variance value of the estimate based on transformation of the parabolic boundary value problem corresponding to the diffusion process is proposed. Some numerical results are presented.
Key words: diffusion process, stochastic differential equations, absorbing boundary, variance of an estimate of the functional, Euler method.
Received: 15.01.2010
Revised: 28.06.2010
English version:
Numerical Analysis and Applications, 2011, Volume 4, Issue 2, Pages 114–124
DOI: https://doi.org/10.1134/S1995423911020030
Bibliographic databases:
Document Type: Article
UDC: 519.676
Language: Russian
Citation: S. A. Gusev, “Minimizing the variance of estimate of mathematical expectation of a diffusion process functional by parametric transformation of the parabolic boundary value problem”, Sib. Zh. Vychisl. Mat., 14:2 (2011), 141–153; Num. Anal. Appl., 4:2 (2011), 114–124
Citation in format AMSBIB
\Bibitem{Gus11}
\by S.~A.~Gusev
\paper Minimizing the variance of estimate of mathematical expectation of a~diffusion process functional by parametric transformation of the parabolic boundary value problem
\jour Sib. Zh. Vychisl. Mat.
\yr 2011
\vol 14
\issue 2
\pages 141--153
\mathnet{http://mi.mathnet.ru/sjvm432}
\transl
\jour Num. Anal. Appl.
\yr 2011
\vol 4
\issue 2
\pages 114--124
\crossref{https://doi.org/10.1134/S1995423911020030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79957857193}
Linking options:
  • https://www.mathnet.ru/eng/sjvm432
  • https://www.mathnet.ru/eng/sjvm/v14/i2/p141
  • This publication is cited in the following 3 articles:
    1. S. A. Gusev, “O dispersii otsenki funktsionala ot diffuzionnogo protsessa v oblasti s otrazhayuschei granitsei”, Sib. zhurn. vychisl. matem., 25:4 (2022), 359–369  mathnet  crossref
    2. S. A. Gusev, “On the Variance of Estimation of a Diffusion Process Functional in a Domain with a Reflecting Boundary”, Numer. Analys. Appl., 15:4 (2022), 293  crossref
    3. T. A. Averina, K. A. Rybakov, “A modification of numerical methods for stochastic differential equations with the first integral”, Num. Anal. Appl., 12:3 (2019), 203–218  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:549
    Full-text PDF :408
    References:56
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025