Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2008, Volume 11, Number 2, Pages 201–218 (Mi sjvm43)  

This article is cited in 17 scientific papers (total in 17 papers)

Comparative analysis of two numerical methods to measure Hausdorff dimension of the fractional Brownian motion

S. M. Prigarina, K. Hahnb, G. Winklerb

a Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences
b Institute of Biomathematics and Biometry Helmholtz Zentrum München
References:
Abstract: The objective of the paper is to study by Monte Carlo simulation statistical properties of two numerical methods (the extended counting method and the variance counting method) developed to estimate the Hausdorff dimension of a time series and applied to the fractional Brownian motion.
Key words: fractal set, Hausdorff dimension, extended counting method, variance counting method, generalized Wiener process, fractional Brownian motion.
Received: 08.02.2007
English version:
Numerical Analysis and Applications, 2008, Volume 1, Issue 2, Pages 163–178
DOI: https://doi.org/10.1134/S1995423908020079
MSC: 28A80, 62M10, 65C05
Language: Russian
Citation: S. M. Prigarin, K. Hahn, G. Winkler, “Comparative analysis of two numerical methods to measure Hausdorff dimension of the fractional Brownian motion”, Sib. Zh. Vychisl. Mat., 11:2 (2008), 201–218; Num. Anal. Appl., 1:2 (2008), 163–178
Citation in format AMSBIB
\Bibitem{PriHahWin08}
\by S.~M.~Prigarin, K.~Hahn, G.~Winkler
\paper Comparative analysis of two numerical methods to measure Hausdorff dimension of the fractional Brownian motion
\jour Sib. Zh. Vychisl. Mat.
\yr 2008
\vol 11
\issue 2
\pages 201--218
\mathnet{http://mi.mathnet.ru/sjvm43}
\transl
\jour Num. Anal. Appl.
\yr 2008
\vol 1
\issue 2
\pages 163--178
\crossref{https://doi.org/10.1134/S1995423908020079}
Linking options:
  • https://www.mathnet.ru/eng/sjvm43
  • https://www.mathnet.ru/eng/sjvm/v11/i2/p201
  • This publication is cited in the following 17 articles:
    1. Advances in Chemical and Materials Engineering, Bio-Locomotion Interfaces and Biologization Potential in 4-D Printing, 2024, 203  crossref
    2. O. Lazorenko, L. Chernogor, “FRACTAL RADIOPHYSICS. Part 2. FRACTAL AND MULTIFRACTAL ANALYSIS METHODS OF SIGNALS AND PROCESSES”, Radio phys. radio astron., 28:1 (2023), 5  crossref
    3. Evangelina García-Armenta, Gustavo F. Gutiérrez-López, “Fractal Microstructure of Foods”, Food Eng Rev, 14:1 (2022), 1  crossref
    4. Tetiana Ianevych, Iryna Rozora, Anatolii Pashko, “On one way of modeling a stochastic process with given accuracy and reliability”, Monte Carlo Methods and Applications, 28:2 (2022), 135  crossref
    5. Pashko A., Sinyayska O., Oleshko T., “Simulation of Fractional Brownian Motion and Estimation of Hurst Parameter”, 15Th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (Tcset - 2020), IEEE, 2020, 632–637  crossref  isi  scopus
    6. Pashko A., Krak V I., Vasylyk O., Syniavska O., Puhach V.M., Shevchenko L.S., Omiotek Z., Mussabekova A., Baitussupov D., “Quality Estimation For Models of a Generalized Wiener Process”, Prz. Elektrotechniczny, 96:10 (2020), 94–97  crossref  isi  scopus
    7. Nayak S.R., Mishra J., Palai G., “Analysing Roughness of Surface Through Fractal Dimension: a Review”, Image Vis. Comput., 89 (2019), 21–34  crossref  isi  scopus
    8. Anatolii Pashko, Violeta Tretynyk, 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T), 2019, 855  crossref
    9. A. O. Pashko, O. I. Vasylyk, “Simulation of fractional Brownian motion basing on its spectral representation”, Theory Stoch. Process., 23(39):1 (2018), 73–81  mathnet  mathscinet  zmath
    10. Yuriy Kozachenko, Anatolii Pashko, Olga Vasylyk, “Simulation of generalized fractional Brownian motion in C([0,T])”, Monte Carlo Methods and Applications, 24:3 (2018), 179  crossref
    11. Hahn K., Massopust P.R., Prigarin S., “a New Method To Measure Complexity in Binary Or Weighted Networks and Applications To Functional Connectivity in the Human Brain”, BMC Bioinformatics, 17 (2016), 87  crossref  isi  scopus
    12. V. A. Ogorodnikov, S. M. Prigarin, A. S. Rodionov, “Quasi-Gaussian model of network traffic”, Autom. Remote Control, 71:3 (2010), 473–485  mathnet  crossref  mathscinet  zmath  isi
    13. Lopes R., Dubois P., Bhouri I., Akkari-Bettaieb H., Maouche S., Betrouni N., “La géométrie fractale pour l'analyse de signaux médicaux: état de l'art [Fractal geometry for medical signal analysis: A review]”, IRBM, 31:4 (2010), 189–208  crossref  isi  scopus
    14. Lopes R., Betrouni N., “Fractal and multifractal analysis: A review”, Medical Image Analysis, 13:4 (2009), 634–649  crossref  isi  scopus
    15. Prigarin S.M., Konstantinov P.V., “Spectral numerical models of fractional Brownian motion”, Russian J. Numer. Anal. Math. Modelling, 24:3 (2009), 279–295  crossref  mathscinet  zmath  isi  elib  scopus
    16. S. M. Prigarin, K. Hahn, G. Winkler, “Variational dimension of random sequences and its application”, Num. Anal. Appl., 2:4 (2009), 352–363  mathnet  crossref
    17. Belov S.D., Lomakin S.V., Ogorodnikov V.A., Prigarin S.M., Rodionov A.S., Chubarov L.B., “Analiz i modelirovanie trafika v vysokoproizvoditelnykh kompyuternykh setyakh”, Vestn. Novosibirskogo gos. un-ta. Ser.: Informatsionnye tekhnologii, 6:2 (2008), 41–48
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:513
    Full-text PDF :163
    References:63
    First page:3
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025