Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2011, Volume 14, Number 1, Pages 91–102 (Mi sjvm428)  

This article is cited in 1 scientific paper (total in 1 paper)

Estimation of fractal dimension of random fields on the basis of variance analysis of increments

S. M. Prigarinab, K. Hahnc, G. Winklerc

a Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University, Novosibirsk
c Institute of Biomathematics and Biometry Helmholtz Zentrum Muenchen, Neuherberg, Germany
References:
Abstract: This paper deals with estimating the fractal dimension of realizations of random fields. The numerical methods in use are based on analysis of the variance of increments. To study the fractal properties, we propose the use of a specific characteristic of random fields called “variational dimension”. For a class of Gaussian fields with homogeneous increments, the variational dimension converges to the Hausdorff dimension. Several examples are presented to illustrate that the concept of variational dimension can be used to construct effective computational methods.
Key words: computation of dimension, random fields, Hausdorff dimension, fractal analysis, variational dimension.
Received: 12.01.2010
Revised: 15.04.2010
English version:
Numerical Analysis and Applications, 2011, Volume 4, Issue 1, Pages 71–80
DOI: https://doi.org/10.1134/S1995423911010071
Bibliographic databases:
Document Type: Article
MSC: 28A80, 62M10, 65C05
Language: Russian
Citation: S. M. Prigarin, K. Hahn, G. Winkler, “Estimation of fractal dimension of random fields on the basis of variance analysis of increments”, Sib. Zh. Vychisl. Mat., 14:1 (2011), 91–102; Num. Anal. Appl., 4:1 (2011), 71–80
Citation in format AMSBIB
\Bibitem{PriHahWin11}
\by S.~M.~Prigarin, K.~Hahn, G.~Winkler
\paper Estimation of fractal dimension of random fields on the basis of variance analysis of increments
\jour Sib. Zh. Vychisl. Mat.
\yr 2011
\vol 14
\issue 1
\pages 91--102
\mathnet{http://mi.mathnet.ru/sjvm428}
\transl
\jour Num. Anal. Appl.
\yr 2011
\vol 4
\issue 1
\pages 71--80
\crossref{https://doi.org/10.1134/S1995423911010071}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952460768}
Linking options:
  • https://www.mathnet.ru/eng/sjvm428
  • https://www.mathnet.ru/eng/sjvm/v14/i1/p91
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:338
    Full-text PDF :112
    References:45
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024